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Abstract

A performance analysis for a pulsed plasma thruster(PPT) has been conducted to predict the thrust and current change. 

Two models were implemented – a one-dimensional lumped circuit analysis model and the Teflon ablation model provided 

by Michael Keidar. The circuit model incorporating resistance and inductance models was adapted to predict the magnitude 

of the discharge current. Numerical simulations like current discharge rates with different voltages were reasonably well 

compared with experimental data. The effects of Teflon ablation on thruster characteristics were investigated.
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Nomenclature

β	 : correction factor

ΦB	 : Magnetic flux (Vs)

μ0	 : Magnetic permeability of free space (N/A2)

Γi	 : Ion erosion rate (kg/C)

B	 : Magnetic field (T)

CPPT	 : Capacitance of the PPT (F)

h	 : Separation distance between electrodes (m)

I	 : Current (A)

J	 : Current Density (A/m2)

k	 : Boltzmann constant (J/K)

L	 : Inductance (H) 

m	 : Atomic mass of Teflon (kg)
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Nomenclature 
 

β:   correction factor 

ΦB: Magnetic flux(Vs) 

μ0: Magnetic permeability of free space 

 (N/A2) 

Γi: Ion erosion rate (kg/C) 

B: Magnetic field (T) 

CPPT: Capacitance of the PPT (F) 

h: Separation distance between  

electrodes(m) 

I: Current (A) 

J: Current Density (A/m2) 

k: Boltzmann constant (J/K) 

L: Inductance (H)  

m: Atomic mass of Teflon(kg) 

: Mass flow rate (kg/sec) 

n: Number density (1/m3) 

P: Pressure (Pa) 

T: Temperature (K) 

V: Voltage applied across the Capacitor(V) 

R: Resistance  (Ω) 

Subscripts 
Capacitor : Properties of Capacitor 

Circuit : Properties of Circuit 

Plasma : Properties of palsma 

0 : initial value 

 

1. Introduction 
 

A pulsed plasma thruster (PPT), a 

plasma jet engine, is a form of electric 

spacecraft propulsion. PPTs are generally 

cheap to manufacture and to operate. In 

addition, they are mechanically scalable. 

The efficiency of the thruster is, however, 

lower than chemical propulsion systems. 

A typical PPT consists of several 

constituent components; propellant, a 

capacitor storing energy, a power unit to 

supply the capacitor with energy, 

electrodes accelerating the forming 

plasma, and a sparkplug to initiate the 

discharge as shown in Fig.1 
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Fig. 1. ��Schematic of a PPT
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capacitor storing energy, a power unit to supply the capacitor 

with energy, electrodes accelerating the forming plasma, 

and a sparkplug to initiate the discharge as shown in Fig.1

PPT system analysis models require specific physics 

different from chemical propulsion systems because of 

a plasma flow to produce thrust. For PPT systems, an 

analysis must be carried out on the interaction between the 

propellant surface and the plasma bulk and the motion of 

plasma flow though nozzle. 

The purpose of the present study is to develop in-house 

modeling capabilities to understand a pulsed plasma 

discharge. A one-dimensional lumped circuit analysis 

model with a MHD flow model method was implemented. 

A lumped circuit model including plasma resistance and 

inductance model was adapted to predict the magnitude of 

a discharge current. Using Newton’s second law and Lorentz 

force, the motion of the plasma bulk was predicted. The Teflon 

ablation was analyzed using Mickeal Keidar’s model. [1] The 

effect of the Teflon ablation on the thruster characteristics 

were investigated. The PPT model also predicted the current 

profile for discharges between electrodes and the analysis 

results were validated with previous research.  

2. Governing Equations

2.1 Momentum equation 

To predict the acceleration of the plasma bulk as a whole 

out of the thruster, Newton’s second law and Lorentz force 

were adapted.
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where v  is the velocity of the 

plasma and ����� ��⁄  is the mass flow rate 

of plasma when a discharge occurs. The 

plasma bulk consists of copper, carbon 

and fluorine ions separated from 

electrodes and Teflon gas from a 

propellant surface. The rate of mass loss 

of copper can be determined as a function 

of the discharge current(I) and the ion 

erosion rate(Γ�).  
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When evaluating Lorentz force, the 

magnetic field contribution from the self- 

induced magnetic field in the x-y plane 

will cancel itself out, so only the external 

magnetic field in the y-axis needs to be 

considered.  In the present study, the 

external magnetic field in the x-axis was 

zero as the fringe effects are neglected. 

The current density in the x-y plane is 

also zero. The Lorentz force integrated 
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where v is the velocity of the plasma and dmtot/dt is the mass 

flow rate of plasma when a discharge occurs. The plasma bulk 

consists of copper, carbon and fluorine ions separated from 

electrodes and Teflon gas from a propellant surface. The rate 

of mass loss of copper can be determined as a function of the 

discharge current(I) and the ion erosion rate(Γi). 
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When evaluating Lorentz force, the magnetic field 

contribution from the self- induced magnetic field in the 

x-y plane will cancel itself out, so only the external magnetic 

field in the y-axis needs to be considered.  In the present 

study, the external magnetic field in the x-axis was zero as 

the fringe effects are neglected. The current density in the 

x-y plane is also zero. The Lorentz force integrated over the 

cylindrical coordinates can be therefore calculated using 

[2]. Φ is a half of an electrode’s thickness and Iz is current 

through an electrode.
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The Eqs. 1 through 3 can be summarized and expressed 

as Eq. 4.  
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The modeling of the Teflon ablation rate and the current 

value generated during the discharge is required to calculate 

the motion of the plasma flow using Eq. 4. To predict the 

current value, the lumped circuit model is utilized. In order 

to predict the amount of Teflon ablation, the theoretical 

model proposed by Micheal Keidar is adapted. [1]

2.2 Lumped circuit model 

A current of the PPT system flows through the current 

loop. It can be alternatively expressed as the difference 

between the potential before and after the current discharge. 

Also, by considering Kirchhoff’s law, the electromotive force 

can be expressed as Eq. 5
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reasonable for describing the plasma-
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Micheal Keidar proposed the theoretical model to 

analysis the relation between the Knudsen layer and the 

hydrodynamic non-equilibrium layer. [1] The model is 

the distribution function of the emitted particles which 

is transformed from a half-Maxwellian into a drifted 

Maxwellian at the Knudsen edge. The relations between 

parameters at the Knudsen layer edge can be described by 

the following set of following equations[4].
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organized the solutions from Eqs. 9 to 12 in tabular form. 

The Teflon ablation rate was determined via interpolation. 

This is standard procedure, and it is carried out using the 

temperature and density of plasma for each time step. The 

resistance of the plasma bulk is solved from the inverse of 

the conductivity integrated across the distance between 

the electrodes. Plasma conductivity is a function of plasma 

frequency and density. To gain plasma properties such as 

electron temperature, plasma density and flow velocity, a 

simplified one- dimensional MHD equation is adapted. Fig, 

3 shows a flow chart for the PPT performance analysis.

4.  Discussion 

4.1 Validation 

The analysis results are compared with experimental 

data[2] for discharge current variation between the 

electrodes as measured during PPT operation. Teflon serves 

as the PPT propellant and it is inserted between the two 

electrodes. Table 1 shows the PPT specifications.

Figures 4, 5 and 6 show the validity of the model in terms 

of predicting the current profile with Teflon ablation at 596V, 

952V and 1229V at an electrode gap separation of 3cm. 

Current discharge rates with different voltages are compared 

with experimental data. Both the experimental and 

calculated results have the same frequency about 134kHz. 

The sinusoidal wave is gradually offset due to the intermittent 

current discharge between electrodes. The decrease in the 

current magnitude gained from analysis results is faster than 

decrease in the current of the experimental data since the 

ionization of the Teflon gas is not considered in this study.

4.2 Prediction of Plasma flow

Figures 7 through 9 show the prediction of the discharge 

current properties at 1229V. The distribution of the electron 

density and the temperature rapidly increases to these 

peak and then gradually decays. A tendency of two results 

are similar because the electron temperature effects on an 

ionization of cupper molecules and ions. The maximum 

value of the electron temperature is 254eV. Because it is 

enough energy to raise Cu+25 charge state, the plasma density 

Table 1. PPT specifications

 

equation is adapted. Fig, 3 shows a flow 

chart for the PPT performance analysis. 
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Fig. 5. Comparison result with experimental data (V0=952V)

Fig. 6. Comparison result with experimental data (V0=1229V)

(138~143)16-061.indd   141 2017-04-04   오후 7:29:40



DOI: https://doi.org/10.5139/IJASS.2017.18.1.138 142

Int’l J. of Aeronautical & Space Sci. 18(1), 138–143 (2017)

is dense at high temperature region. This phenomenon was 

observed by the previous experimental study.[6] 

Figure 9 shows the flow radius distribution of the plasma 

flow between the electrodes during the discharge. The flow 

radius shows a conical expansion from the cathode surface 

to the anode surface before reaching the maximum current. 

When the discharge current decreases, the minimum value 

of the plasma radius is located between the electrodes 

because of the electron density decrease and the plasma 

radius gradually decays because of same reason.  

4.3 Comparison results with/without Teflon ablation 

The predicted PPT performance with and without the 

Teflon ablation is compared. The plasma flow, which 

was caused by the current discharge and Teflon ablation, 

accelerates due to the Lorentz force. Because the thrust 

of a PPT system is function of the mass flow rate and the 

velocity of gas, Teflon ablation rate is an important factor for 

Fig. 7. Electron density

Fig. 8. Electron temperature

Fig. 9. Plasma Radius Fig. 10. Comparison results with/without Teflon ablation (V0=596V)

Table 2. Thrust with/without Teflon ablation

 

When the charging voltage increases, the 
difference becomes more. The rise of 
plasma kinetic energy gained from the 
discharging process can be promote the 
rate of Teflon ablation. 
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Fmax (μN) 
1.15 0.53 

117.0% increase 

Fmean (μN) 
0.22 0.12 

83.3% increase 

V0 = 952V 
Teflon ablation 

w/ w/o 

Fmax (μN) 
3.38 1.54 

119.5% increase 

Fmean (μN) 
0.73 0.39 

87.2% increase 

V0 = 1229V 
Teflon ablation 

w/ w/o 

Fmax (μN) 
5.82 2.67 

118.0% increase 

Fmean (μN) 
1.39 0.73 

90.4% increase 

 

 
Fig. 10 Comparison results with/without 

Teflon ablation (V0=596V)	
	

 
Fig. 11 Comparison results with/without 
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Fig. 12 Comparison results with/without 

Teflon ablation (V0=1229V)	
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determining the PPT performance. Figs. 10 through 12 show 

the thrust from each of the analytical results. 

Compared to the thrust without Teflon ablation, the thrust 

with Teflon ablation increases about 120%, and the average 

thrust increases about 83%~90%. When the charging voltage 

increases, the difference becomes more. The rise of plasma 

kinetic energy gained from the discharging process can be 

promote the rate of Teflon ablation.

5. Conclusions 

The analysis model of PPT performance is developed 

which is based on a 1-D lumped circuit model including 

the ablation rate of Teflon and the behavior of the plasma 

flow using MHD equation. The Micheal Keider’s model is 

implemented for plasma properties and Teflon ablation 

rates. A detailed analysis of the discharge electrode based on 

splitting the conductor is conducted. 

The validation of the model in terms of predicting the 

current profile with Teflon ablation at 596V, 952V and 

1229V has an electrode gap separation of 3cm. Both the 

experimental and calculated results have very similar 

current profile and the same frequency about 134kHz.  The 

tendency of the electron temperature and the ion number 

density are similar because the electron temperature affects 

on an ionization of cupper molecules and ions.

Teflon ablation augments thrust about 120% over the 

ignoring of Teflon ablation and the increment is positively 

proportional to the charging voltage. In addition, a plasma 

kinetic energy gained from the discharging could promote 

the Teflon ablation rate and the maximum thrust.  
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