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Abstract

Yield management, which originated from the U.S. service industry, uses pricing techniques and information systems 

to make demand management decisions. Demand uncertainty is an important factor in the area of demand manage-

ment. A key strategy to reduce the effects of demand uncertainty is substitution. The most generally known type of 

substitution is inventory-driven substitution, in which consumers substitute an out-of-stock product by buying a similar 

or other type of product. Another type of substitution is the price-driven substitution, which occurs as a result of price 

changes. In this research, we consider two market segments that have unique perishable products. We develop yield 

management optimization models with stochastic demand based on the newsvendor model where inventory-driven and 

price-driven substitutions are allowed between products in the two market segments. The most significant contribution 

of this research is that it develops analytical procedures to determine optimal solutions and considers both types of 

substitution. We also provide detailed theoretical analysis and numerical examples.
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1. Introduction

Yield management (YM) employs the appli-

cation of “information systems and pricing 

strategies to allocate the right capacity to the 

right customer at the right place at the right 

time.” YM set prices for the forecasted de-

mands, and price sensitive consumers will buy 

the same product at different prices at off-peak 

or peak times [5]; therefore, it is very sensitive 

to demand uncertainty. Yield management 

techniques have been developed for service in-

dustries for a long time to overcome demand 

uncertainty. Perishable products are common 

object in service industry, and food stores are 

good examples for perishability. Managers of 

a food store (for example, coffee & donut 

stores) decide the number of donuts to order 

or bake every morning. Also, perishable prod-

ucts in retailing such as fashion goods have 

multiple demand classes. In retailing area, 

product variety management has grown signi-

ficantly. Many researchers pointed out that 

product variety increases product operations 

costs because of demand uncertainty. Many 

strategies to reduce the impact of demand un-

certainty have been developed. One of the most 

important well-known strategies is substitu-

tion. Different variations of the same product 

(e.g. different color, flavors etc.) are good sub-

stitutable product each other. Substitution plays 

a key role in determining the exact demands 

under demand uncertainty.

Newsvendor problems have been used wide-

spread for optimization of perishable products 

in service industry. The classical newsvendor 

problem focuses only on deciding the optimal 

ordering level without considering demand 

movement to maximize his expected profit [24, 

25]. Customers will purchase initially requested 

products as long as the price compares favor-

ably to the prices of similar substitutable prod-

ucts; however, if the price differences between 

the similar products becomes large, demand 

movement occurs. The cross elasticity of de-

mand measures the responsiveness of the quan-

tity demanded of a product to a change in the 

price of another product. Setting a lower price 

for a product may increase potential customers 

and setting a higher price for the same product 

increase profit margin but may lead movement 

of potential customers to buying different 

products. This type of demand movement is 

called price-driven substitution. The most gen-

erally known type of demand movement, which 

is called inventory-driven substitution, occurs 

when consumers substitute for a product that 

is out of stock by buying a similar substitutable 

product [1, 2, 5, 6, 11, 15, 17, 19, 20, 7].

YM is concerned with demand-management 

decisions and the methodology required making 

them, and it uses the three basic demand-

management decisions : structural decisions, 

pricing decisions and quantity decisions. Firms 

have to adjust price and capacity level decisions 

by advertising prices or capacity decisions in 

advance. If the decisions affecting demand as-

pects (e.g. types of customers, different type 

of products to sell, time, purchase behavior, etc.) 

are independent the decision making problem 

is very simple. But demand-management is far 

more difficult. Demand decisions for different 

products and customers are closely linked to 

the information by the firm. Customer purchase 

behavior depends on customers’ heterogeneity. 

Customers in the service industry certainly ex-
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hibit these characteristics. For example, a cus-

tomer who prefers a higher quality product may 

choose to buy a lesser quality product because 

of its lower price. Customer buying behavior 

is also dependent on other factors such as 

stock-outs. Demand functions might consist of 

buyers’ different behavior components. The 

substitution effect for a product with temporary 

stock-outs is one of the elements that affect 

the demand function significantly. Customer 

response to the stock-outs is divided among 

these possibilities: substitute the item they 

sought, delay the purchase, or leave without 

purchasing. Stock-outs may negatively affect 

the image of the brand or the store so that under-

standing customers’ response to stock-outs will 

lead to better policies for pricing and production 

decisions. This kind of substitution can also 

be found in the retail market as well as airlines. 

Business class seats on airplanes can be sub-

stitutes for economy seats. Customers who ini-

tially intend to buy economy seats but cannot 

buy them may buy business seats. Likewise, 

low-capacity microchip customers may buy a 

high-capacity microchip if they cannot buy a 

low-capacity microchip that is cheaper than 

the high-capacity one.

Most research papers in operations research 

and management science, operations manage-

ment have considered inventory-driven sub-

stitution models and rarely considered price-

driven substitution. However, understanding 

the potential substitution effects on pricing and 

production decisions is very important in mak-

ing production plan. Inventory-driven sub-

stitution research has been studied by many 

authors. Examples of this research include 

Karaesmen and van Ryzin [10], Rao et al. [17], 

Dong et al. [3], Dutta, and Chakraborty [4], 

Shumsky, and Zhang [19], Wang and Kapuscinski 

[23], Zhao et al. [27], Karakul and Chan [9]. 

Kuyumcu and Popescu [14] studied joint pric-

ing and inventory control by considering de-

terministic optimization models for multiple 

substitutable products, and they showed that 

the optimization problem could be reduced to 

a pure pricing problem. Karakul and Chan [3] 

considered stochastic optimization problems, 

which are a joint pricing and inventory deci-

sion, for an existing product and a new im-

proved production decisions. The authors de-

veloped an in-depth mathematical procedure 

for finding optimal solutions for the stochastic 

problem with inventory-driven substitution. 

Research on optimization models with price-

driven substitution has been done by a few re-

searchers e.g. Kocabiykoglu and Popescu [13], 

Kim [11], Lus and Muriel [15], Tang and Yin 

[22] and Yu [26]. Lee and Kim [7] developed 

an optimal pricing and production decision 

model with price-driven substitution alone, 

where a part of the demand lost in one market 

moves to the other market. Lus and Muriel [15] 

considered deterministic pricing/quantity de-

cision problems with two substitutable prod-

ucts and compared two alternative measures 

of product substitutability for linear demand 

functions. Tang and Yin [22] explored joint 

pricing and ordering policies for two sub-

stitutable products with deterministic price-

dependent demand. They considered price-

driven substitution alone. Yu [26] studied joint 

pricing and inventory decisions with price-

driven substitution for two substitutable prod-

ucts, where there was a resource constraint 

for the two market segments. 
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In this research, we study demand-manage-

ment decisions in YM. We develop a single-

period model for deciding optimal prices and 

capacity levels where the firm has flexibility 

to allow both inventory-driven substitution 

and price-driven substitution for the two sub-

stitutable perishable products. We add both in-

ventory-driven and price-driven substitution 

into joint pricing and capacity decisions based 

on the traditional newsvendor model. We de-

velop the solution procedures to gain an under-

standing of the relationship between sub-

stitution and optimal solutions. The main con-

tribution of this research is that we consider 

both price-driven and inventory-driven sub-

stitution at the same time, and we focus on 

demand substitution as a function of price dif-

ferences based on an asymmetrical demand 

function. We consider stochastic optimization 

models rather than deterministic ones. The im-

pact of substitution on the optimal price, pro-

duction level and the expected revenue will be 

illustrated by numerical examination how opti-

mal pricing and production decisions are 

affected.

2. The Mathematical Model 

There are two segmented markets, and de-

mand substitution occurs as a result of not only 

price changes but inventory stock-outs. The 

unit price in market A is higher than the unit 

price in market B. We consider the two seg-

mented markets where the demands are classi-

fied by different market segment and price. 

Initially, the demands are assumed to be in-

dependent, identically distributed with known 

parameters and distributions. Later, demand 

dependencies are created by substitution. We 

assume that a price-driven substitution is re-

alized from a market with a high-priced prod-

uct (A) to a market with a low-priced product 

(B). We also assume that the demand in each 

market segment is dependent on the prices of 

both markets. Under the above assumptions, 

the revenue manager or supply chain manager 

has to confront a situation for determining the 

production quantities and prices. We discuss 

on how the decisions regarding prices and pro-

duction levels are made. The following notation 

will be used throughout the paper :

  : ratio of price-driven substitution

  : price-driven substitution rate

  : ratio of inventory-driven substitution

  : unit price of product A

  : unit price of product B

  : per-unit variable cost of product A

  : per-unit variable cost of product B

  : demand for product A

  : demand for product B

  : capacity level of product A

  : capacity level of product B

⋅  : p.d.f.

⋅  : c.d.f.

⋅  : total expected profit

First, we consider that consumers substitute 

for a product that is out of stock by buying 

a similar substitutable product. If there are 

customers who cannot buy product A (at the 

price of ) then a fraction of the unsatisfied 

customers will shift to market B to buy product 

B at the price of . In market B, the actual 

demand is the original demand for product B 

plus the diverted demand from market A. 
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Therefore, customers of both classes buy pro-

duct B. The demands are assumed to be real-

ized sequentially over time. The customers 

who prefer to buy high-priced products arrive 

before those who prefer low-priced products. 

This kind of one-way substitution problem is 

frequently found in the retail industries. For 

example, in the retail stores that sell perishable 

items, some customers who prefer to buy the 

product on the first day when the item is fresh-

est and more expensive while other customers 

may buy less expensive products on the second 

day or later. Then, the actual sales at the two 

markets are given by :

Market A :  

Market B :      

We begin with a capacity level decision alone. 

The firm has to decide the optimal quantity 

of each product at given prices. We assume 

that a fixed fraction of customers who cannot buy 

a high-priced product may buy a low-priced 

one. But we do not consider price-driven sub-

stitution simultaneously. Under these assump-

tions, the optimization problem to consider is :

Maximize      



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∞
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   

The expected profit function (A) is jointly 

concave so that there is a unique optimal sol-

ution : a unique maximum of (A) over   and 

  for  . The expected profit function is con-

cave in   for a given , and is concave in   

for a given . The profit function is also jointly 

concave in   and . The first derivatives with 

respect to   and   are as follows :



   
     




  

  
                                   (1)



   
    



 
  

    
                          (2)

The sufficient conditions for the existence 

of a unique maximum are satisfied as follows, 

where He  denotes Hessian :

    



  

          
          

     

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



  

    
  

     

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


   

           ×    

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

  

           




  

 



    

            



  

 



  



               



  

             

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
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



  

 



    .

After simplification from (1) and (2) we have 
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the optimal capacity levels, 
 , and 

 :


   

 

    


  

 

 


 

 
 

From above, if      , then (1) 

is always negative and 
  . If   , then 

it is not beneficial to manufacture product A 

when the unit profit of product A is less than 

the unit profit of product B. If the unit profit 

of product A is sufficiently smaller than that 

of product B where     and    

  ; it is not beneficial to manufacture 

product A. Similarly, when     

, that is, if the unit profit of product A 

is sufficiently smaller than that of product B, 

then (2) is always positive and the optimal 

quantity of product B is arbitrarily large. 

Considering (1) and (2), the first-order con-

dition has an intuitive interpretation. Without 

the second term of (1) the optimal solution is 

equivalent to the single-period newsvendor 

problem with zero holding and shortage costs. 

The optimal quantity of product A is always 

less than the optimal solution of the equivalent 

newsvendor problem. If substitution ratio is 0, 

then the problem (A) becomes the newsvendor 

problem with zero holding and shortage costs. 

The optimal quantity to manufacture for market 

B is always greater than that of the equivalent 

newsvendor problem because the substituted 

demand flows from market A to market B. If 

there is any substituted demand between the 

markets, then the optimal solutions have to be 

adjusted from those of the newsvendor pro-

blems. As the substitution rate increases, the 

optimal quantity of product A is decreased while 

the optimal quantity of product B is increased. 

The price of product A affects the decision of 

the optimal level of product B and the price 

of product B also affects the decision of the 

optimal quantity of product A. For the reverse 

case of  , where the customers who prefer 

low-priced products arrive before those who 

prefer high-priced products, we show that this 

case has the same form of unique optimal sol-

utions as that for the case when the customers 

who prefer high-priced products arrive before 

those who prefer low-priced products as long 

as   . For  , there exists a unique 

maximum of (A) over   and . The expected 

profit function is concave in   for a given , 

and is concave in   for a given . The expected 

profit function is jointly concave in   and   

if     (See the proof of proposition 1; if 

  , then  
 ).

We now consider price-driven substitution 

as well as inventory-driven substitution. We 

consider the optimization model by examining 

the optimal pricing decision under stochastic 

demand below. We present the linear stochastic 

demand model used in this research as:

         

        

Consider a firm that manufactures and sells 

two similar products which may substitute each 

other there are two segmented markets and de-

mand substitution occurs as a result of not only 

inventory stock-outs but price differences as 

well. The error terms    are assumed to be 

independent each other and price-independent: 

        is a factor of price-driven 
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substitution and  ≥. We assume that the 

parameters of the demands are carefully chosen 

so that the probability of negative demand is 

entirely zero and can be ignored. Note that   

is the price-driven substitution rate and 

≤≤. We substitute          

 ,         and define new 

variables:       and        

. Let error terms   have p.d.f. of ⋅  and 

c.d.f. of ⋅  for   . The contribution max-

imization problem (A) can be transformed as 

follows :

Miximize      



       

                    


∞

    

 

󰀊
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀈
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀖










       




∞

        

















  

        

  









  


∞

      

  




∞




∞

        

󰀋
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀉
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀗

(B)

              

where :

  
∞


    

      


∞

   

  
∞


     

      


∞

   

and      

  



󰀊
︳
︳
︳
︳󰀈
︳
︳
︳
︳
︳󰀖


∞








  
 
      


∞






  


∞

    




∞




∞

   

󰀋
︳
︳
︳
︳󰀉
︳
︳
︳
︳
︳󰀗

and

        ,

       

            ,

                

We finally have a transformed contribution 

maximization problem for the model (B) :

Maximize                     (C)    
                      

            

We also consider the decision of optimal  , 

  at a given price based on the above ap-

proach :

                 (D)
         

There exists a unique maximum of the trans-

formed profit function in (C) over      

at given   and , and this is also the case 

for model (D). Consider the first derivatives 

with respect to price :



   
      



   
           

           

where 
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  

         ,

    

        

and

   

󰀊
︳
︳
︳
︳󰀈
︳
︳
︳
︳
︳󰀖


∞








  

      


∞






  
 

∞

   




∞




∞

   

󰀋
︳
︳
︳
︳󰀉
︳
︳
︳
︳
︳󰀗

To ensure that a unique maximum exists, 

we show that the sufficient conditions are 

satisfied. The second derivatives are : 




    
     ,




    
     

If     
 
 , then the 

sufficient conditions for the existence of a 

unique maximum are satisfied. From the first 

derivatives, the optimal prices are given by :


    




      

  
  

  

Eliminating decision variables leads us to : 


 

     
  

        

   +      

        
       

     



     
  

         


     

  

        
       

   
     

  
       

   



     
  

          ,

where 

 and 


 are equal to the optimal pri-

ces of the stochastically equivalent model 

which considers only price-driven substitution. 

The optimal prices are unique solutions for 

model (C).

The optimal prices are affected by the ca-

pacity levels of both products. If we set the 

capacity level sufficiently high in order that 

there is no substitution demand as a result of 

stock-outs, then the contribution maximization 

problem (B) is identical to that of the stochastic 

price-driven substitution model. Since ( , ) 

are fixed values in this model, ,   

and ( , ) are also fixed values, and ( , 

) can be either positive or negative. Related 

to capacity level decisions,  ,   provides an-

other interpretation of the production decisions. 

If   is bigger than the value of  , then leftover 

occurs; if   is smaller than the value of  , 

then shortage occurs. We consider the decision 

of a set of the so called optimal stocking factors 

 ,   at given fixed prices. The first de-

rivatives with respect to  ,   are :



   
  

        
∞

 
  

  
           



   
 

∞



  

    

The sufficient conditions for the existence 

of a unique maximum are satisfied :
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    
∞

 
  

  
       

      
 

∞



  

 
      
  

 

     
∞




  × 



∞



  

    

Therefore, a unique optimal solution exists. 

We finally consider the joint optimal pricing 

and capacity level decisions (where there are 

four decision variables). The transformed vari-

ables,  ,   provides another interpretation 

of the production decisions. If   is bigger than 

the value of  , then leftover occurs. If   is 

smaller than the value of  , then shortage 

occurs. The first derivatives with respect to 

 ,   are : 



 ⋅
                       (3)

       
∞

 
  

  
          



 ⋅
 

∞



  

      (4)

The first derivatives with respect to price 

are :



 ⋅
                  (5)



 ⋅
                (6)

           

The expected profit ⋅  has a maximum with 

respect to  ,   at a given  . Similarly, 

⋅  is concave for    at a given  , . 

Thus, the simultaneous solution of the equations 

determines price and capacity level that max-

imizes the expected revenues. We obtain the 

optimal solutions through the four simultaneous 

equations. For (5) and (6) the optimal prices 

can be written as functions of  , . These 

can be substituted into (3) and (4). Then, the 

contribution maximization problem can then be 

reduced to a two-variable search problem. 

Consider the first and second derivatives of ⋅  

with respect to   and  . The first derivatives 

with respect to  ,   can be rewritten :



 ⋅
    

∞



        
  

      
         

   

           
     

   
      

∞

 
  

  
          



 ⋅
 

∞



  

    
          

  
  

   
     

∞



  

    

The second derivatives with respect to    

and   are :

 


  ⋅ 
 


′ 

  

        
 

        
  

  

′    
       

∞

 
  

    
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          
  

  

   
       

∞

 
  

      

 


  ⋅ 
   

     

′    
      

∞



  

   
         

  
  

   
     

∞



  

     

Therefore, ⋅  is concave for   at a given 

, and   is also concave for   at a given

 . The sufficient condition for the existence 

of a unique maximum is satisfied if:

 
  ⋅ 




  ⋅ 
 

  ⋅ 
  ,

which is:

  

󰀊
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀖

 


′ 

     
 

   
  

  

′    


∞

 
  

    

     
     

′    


∞

 
  

    

󰀋
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀗

×

󰀊
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀖

   
     

′    
 

∞



  

   
     

  
  

   
  

∞



  

   

󰀋
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀗

-

󰀊
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀖

 







  


′  

  

′    






  
∞

 
  

    

     
  

  

   


  
∞

 
  

    

󰀋
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳
︳󰀗

  .

The optimal prices can be obtained from the 

following two equations :


     




      

  

   
∞

 
  

    
     

  
  

 


The transformed variable,   represent the 

stocking factor defined as     where 

  is the mean of   and   is the standard de-

viation of   and SF denotes the safety factor. 

  _       . The 

optimal pricing and production decision is to 

manufacture 
  

 
 

   units at the 

price of 
 

  where 
  and 

  maximize the 

total expected revenues. 

3. Numerical Examples

Consider an example of the optimization mod-

el B where   and   follow a Uniform demand 

distribution ranges :   ,  . Let   ,  

  ,   ,   ,   ,     and , 

  ,  ,         and     and 5. The 

optimal prices and the expected revenues as 

a function of (price-driven substitution rate) 
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are displayed in <Table 1>. From the results, 

we see that the optimal price does not change 

significantly when   is small (as   increases) 

while the expected revenues increase signi-

ficantly. Comparing the results of the stochastic 

model with only considering price-driven sub-

stitution with those of our model in this research, 

the optimal prices do not change significantly. 

As   increases, the optimal price of products 

A increases and that of product B decreases, 

and the total expected profit increases.

<Table 1> Numerical Results for the Optimal Pricing 
Decisions at Given  and 

(  ,   ,   ,   )

(  , inventory-driven substitution rate,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.58 304.83 305.31 305.81 306.30 306.80 307.05


 254.03 254.02 254.01 254.04 254.07 254.12 254.15

 1.2733 1.2761 1.2816 1.2872 1.2928 1.2985 1.3013

1 (in 100,000s).

(  , inventory-driven substitution rate ) 

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 289.62 290.44 292.13 293.89 295.71 297.61 298.58


 288.37 284.83 279.58 275.99 273.48 271.73 271.08

 1.1801 1.1817 1.1892 1.2011 1.2162 1.2336 1.2431

(  , inventory-driven substitution rate )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.60 304.84 305.33 305.83 306.32 306.82 307.07


 254.36 254.34 254.33 254.34 254.36 254.40 254.43

 1.2817 1.2844 1.2900 1.2955 1.3012 1.3068 1.3097

(  , inventory-driven substitution rate )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 289.68 290.50 292.16 293.95 295.78 297.67 298.65


 288.74 285.16 279.86 276.24 273.71 271.94 271.27

 1.1896 1.1910 1.1984 1.2101 1.2251 1.2425 1.2510

(  ,   ,   ,   )

(  , inventory-driven substitution rate   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.12 304.41 305.00 305.58 306.16 306.75 307.05


 243.98 243.97 243.98 244.01 244.05 244.11 244.15

 1.3126 1.3164 1.3242 1.3320 1.3399 1.3479 1.3520

1 (in 100,000s).

(  ,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 287.80 288.79 290.83 292.94 295.13 297.41 298.58


 277.47 274.01 268.93 265.51 263.19 261.64 261.08

 1.1854 1.1915 1.2083 1.2299 1.2549 1.2829 1.2978

(  , inventory-driven substitution rate    )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.14 304.43 305.01 305.60 306.19 306.78 307.07


 244.31 244.30 244.29 244.31 244.34 244.39 244.43

 1.3206 1.3244 1.3322 1.3400 1.3480 1.3560 1.3600

(  ,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 287.86 288.52 290.89 293.00 295.19 297.47 298.65


 277.83 274.32 269.21 265.76 263.42 261.84 261.27

 1.1945 1.2004 1.2172 1.2386 1.2636 1.2915 1.3063

We now demonstrate numerical examples 

for the four-variable decision problem) where 

  and   follow a Uniform demand distribution. 

Let   ,    & ,   ,   ,  
  ,   ,   ,     and     and 5. 

The numerical solutions for the joint pricing 

and capacity level decisions were done by 

standard numerical search procedures using  

<Table 2> displays the numerical results for 

the joint optimal prices and capacity levels as 

a function of   (price-driven substitution rate). 

As   increases at a given   (inventory-driven 

substitution rate), the optimal capacity level of 

product B increase while the optimal capacity 
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levels of product A decrease. We consider the 

two cases for   = 0.1 and 0.9. Compared with 

the results of optimal pricing decision problem 

(B) in Table 1, the total expected profit increases 

but the optimal prices are very similar for any 

  and . If we choose different values of   

and   the optimal prices also changes signi-

ficantly. The optimal capacity level change sig-

nificantly as   and   changes.

<Table 2> Numerical Results for the Joint Optimal 
Prices and Capacity Levels

(  ,   )

(  , inventory-driven substitution rate   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 303.955 304.246 304.828 305.411 305.997 306.584 306.879


 243.795 243.814 243.822 243.850 243.897 243.961 243.999


 1144.801 1141.944 1135.588 1129.242 1122.882 1116.530 1113.340


 216.220 221.679 233.895 246.232 258.684 271.254 277.583

 1.3224 1.3258 1.3336 1.3414 1.3493 1.3573 1.3613

1
 (in 100,000s).

(  ,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 287.634 288.614 290.647 292.759 294.952 297.232 298.407


 277.270 273.844 268.771 265.352 263.046 261.492 260.935


 1315.195 1283.471 1227.810 1179.272 1134.978 1093.184 1072.863


 49.408 73.787 124.448 177.073 231.759 288.634 317.927

 1.1952 1.2012 1.2180 1.2395 1.2645 1.2923 1.3072

(  , inventory-driven substitution rate   

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 303.913 304.206 304.792 305.380 305.969 306.560 306.857


 244.396 244.378 244.361 244.368 244.394 244.440 244.469


 1144.036 1140.836 1134.420 1128.016 1121.618 1115.220 1112.005


 219.337 225.391 237.588 249.900 262.339 274.888 281.211

 1.3240 1.3278 1.3355 1.3434 1.3513 1.3592 1.3632

(  ,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 287.673 288.600 290.661 292.784 294.986 297.272 298.448


 278.166 274.828 269.500 265.949 263.539 261.918 261.334


 1310.735 1281.614 1225.824 1177.194 1132.790 1090.920 1070.586


 59.645 80.760 130.487 182.618 236.991 293.647 322.850

 1.2008 1.2059 1.2221 1.2432 1.2680 1.2956 1.3104

(  ,   )

(  , inventory-driven substitution rate,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.414 304.659 305.149 305.641 306.134 306.630 306.878


 253.822 253.817 253.821 253.842 253.880 253.931 253.963


 1150.199 1147.516 1142.162 1136.804 1131.451 1126.079 1123.399


 165.038 170.146 180.437 190.832 201.319 211.914 217.240

 1.2839 1.2867 1.2922 1.2977 1.3033 1.3090 1.3118

1 (in 100,000s) 

(  )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 289.451 290.264 291.955 293.709 295.531 297.426 298.402


 288.148 284.641 279.399 275.814 273.315 271.571 270.915


 1342.557 1312.919 1261.516 1217.440 1177.768 1140.773 1122.927


 0 14.775 56.861 100.581 146.012 193.262 217.604

 1.1901 1.1923 1.1998 1.2117 1.2267 1.2441 1.2536

(  , inventory-driven substitution rate,   )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 304.389 304.635 305.129 305.624 306.120 306.618 306.868


 254.289 254.274 254.258 254.262 254.284 254.321 254.346


 1149.462 1146.763 1141.358 1135.960 1130.567 1125.167 1122.462


 167.932 173.035 183.312 193.691 204.267 214.747 220.070

 1.2852 1.2880 1.2935 1.2991 1.3046 1.3103 1.3131

(  )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0


 289.452 290.284 291.986 293.747 295.574 297.472 298.500


 289.103 285.418 279.999 276.304 273.730 271.931 271.253


 1341.940 1311.816 1260.196 1215.965 1176.179 1139.104 1120.465


 0.072 20.087 61.624 105.006 150.208 197.285 221.830

 1.1947 1.1959 1.2029 1.2145 1.2292 1.2465 1.2560

We now compare the expected profits of dif-

ferent optimization models. <Table 3> presents 

the expected profits for the eight different cases 

including the numerical results of the model 

with price-driven substitution alone (which do 

not consider inventory-driven substitution). In 

<Table 3>,   represents the total expected 

profit for the traditional newsvendor model 

where   = 290,   = 255 or   = 305,   = 244. In 

this case, we consider a price-driven sub-

stitution for the demands of both products. The 
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expected profits for the traditional newsvendor 

model are also shown at the first row in the 

tables.   represents the total expected profit 

for the joint pricing and production decision 

model with price-driven substitution alone 

Simultaneous control of prices and capacity lev-

els improves the expected profit. Considering 

both types of substitution also affects the total 

expected profit improving. In the joint pricing 

and capacity level decision model, inventory-

driven substitution rate is also important factor 

which affects the total expected profit. 

<Table 3> Comparison of the (optimal) Expected 
Profit of Various Models 

     

(  )

 0.0 0.1 0.3 0.5 0.7 0.9 1.0

 1.2606 - - - - - -

 1.2609 1.2628 1.2667 1.2705 1.2743 1.2782 1.2801

 1.2624 1.2643 1.2682 1.2720 1.2759 1.2797 1.2817

 1.2830 1.2860 1.2910 1.2970 1.3030 1.3080 1.3110

 1.2733 1.2761 1.2816 1.2872 1.2928 1.2985 1.3013

 1.2817 1.2844 1.2900 1.2955 1.3012 1.3068 1.3097

 1.2839 1.2867 1.2922 1.2977 1.3033 1.3090 1.3118

 1.2852 1.2880 1.2935 1.2991 1.3046 1.3103 1.3131

1
 The expected profit of the newsvendor model when 

   ,    .
2 
The expected profit of the capacity level decision model 

when    ,    ,   .
3 
The expected profit of the capacity level decision model 

when    ,    ,   .
4
 The expected profit of joint pricing and capacity level 

decision without inventory-driven substitution; price-

driven substitution alone
5
 The expected profit of the pricing decision model when 

   ,    ,    .
6 
The expected profit of the pricing decision model when 

   ,    ,    .
7 
The expected profit of the joint pricing and capacity 

level decision model when    .
8 
The expected profit of the joint pricing and capacity 

level decision model when    .
1～8

 (in 100,000s).

(  ) 

 0.0 0.1 0.3 0.5 0.7 0.9 1.0

 1.0226 - - - - - -

 1.0229 1.0362 1.0631 1.0899 1.1168 1.1436 1.1570

 1.0237 1.0371 1.0640 1.0908 1.1176 1.1445 1.1579

 1.1880 1.1920 1.1990 1.2110 1.2260 1.2430 1.2530

 1.1801 1.1817 1.1892 1.2011 1.2162 1.2336 1.2431

 1.1896 1.1910 1.1984 1.2102 1.2251 1.2425 1.2510

 1.1901 1.1923 1.1988 1.2117 1.2267 1.2441 1.2536

 1.1947 1.1959 1.2029 1.2145 1.2292 1.2465 1.2560

1
 The expected profit of the newsvendor model when 

   ,    .
2 
The expected profit of the capacity level decision model 

when    ,    ,    .
3
 The expected profit of the capacity level decision model 

when    ,    ,    .
4 
The expected profit of joint pricing and capacity level 

decision without inventory-driven substitution 
5
 The expected profit of the pricing decision model when 

   ,    ,    .
6 
The expected profit of the pricing decision model when 

   ,    ,    .
7
 The expected profit of the joint pricing and capacity 

level decision model when    .
8 
The expected profit of the joint pricing and capacity 

level decision model when    .
1～8

 (in 100,000s).

     

(  ) 

 0.0 0.1 0.3 0.5 0.7 0.9 1.0

 1.2926 - - - - - -

 1.2928 1.2955 1.3007 1.3060 1.3112 1.3164 1.3191

 1.2958 1.2984 1.3037 1.3089 1.3142 1.3194 1.3222

 1.3210 1.3250 1.3330 1.3410 1.3490 1.3570 1.3610

 1.3126 1.3164 1.3241 1.3320 1.3399 1.3479 1.3520

 1.3206 1.3244 1.3322 1.3400 1.3480 1.3560 1.3600

 1.3224 1.3258 1.3336 1.3414 1.3493 1.3573 1.3613

 1.3240 1.3278 1.3355 1.3434 1.3513 1.3592 1.3623

1
 The expected profit of the newsvendor model when 

   ,    .
2 
The expected profit of the capacity level decision model 

when    ,    ,    .
3
 The expected profit of the capacity level decision model 

when    ,    ,    .
4
 The expected profit of joint pricing and capacity level 

decision without inventory-driven substitution 
5
 The expected profit of the pricing decision model when 

   ,    ,    .



14 김 상 원

6 The expected profit of the pricing decision model when 

   ,    ,    .
7 The expected profit of the joint pricing and capacity 

level decision model when    .
8 The expected profit of the joint pricing and capacity 

level decision model when    .
1～8 (in 100,000s).

(  ) 

 0.0 0.1 0.3 0.5 0.7 0.9 1.0

 1.0650 - - - - - -

 1.0657 1.0852 1.1242 1.1633 1.2023 1.2413 1.2609

 1.0676 1.0872 1.1262 1.1652 1.2043 1.2433 1.2628

 1.1950 1.2010 1.2180 1.2390 1.2640 1.2920 1.3070

 1.1854 1.1915 1.2083 1.2299 1.2549 1.2829 1.2978

 1.1945 1.2004 1.2172 1.2386 1.2636 1.2915 1.3063

 1.1952 1.2012 1.2180 1.2395 1.2645 1.2923 1.3072

 1.2008 1.2059 1.2221 1.2432 1.2680 1.2956 1.3104

1
 The expected profit of the newsvendor model when 

       .
2
 The expected profit of the capacity level decision model 

when        ,    .
3
 The expected profit of the capacity level decision model 

when        ,    .
4
 The expected profit of joint pricing and capacity level 

decision without inventory-driven substitution
5
 The expected profit of the pricing decision model when 

   ,    ,    .
6
 The expected profit of the pricing decision model when 

   ,    ,    .
7
 The expected profit of the joint pricing and capacity 

level decision model when    .
8
 Theexpected profit of the joint pricing and capacity 

level decision model when    .
1～8

 (in 100,000s).

4. Conclusions

In this research, we study demand-manage-

ment decisions in Yield Management. We de-

velop a single-period model for deciding optimal 

prices and capacity levels. Substitution is an 

important factor in demand-management as-

pect in YM, and it has been actively researched 

in the area of Management Science. Most of 

the research papers deals with inventory-

driven substitution. In this research, we inves-

tigated the impact of demand substitution as 

a result of both price differences (price-driven 

substitution) and based on inventory stock-outs 

(inventory-driven substitution) on the optimal 

pricing and production levels and the expected 

profits. We discussed structural properties of 

the substitution model and managerial im-

plications. If we effectively control multiple de-

cision variables, then we can improve the ex-

pected profit. The most significant contribution 

of this research is to develop analytical proce-

dures for finding optimal solutions and we con-

sider both types of substitution. We provide 

detailed theoretical analysis and numerical 

examples. Understanding the potential impact 

of demand substitution as a result of price dif-

ferences as well as inventory stock-outs on 

the optimal solutions between multiple market 

segments, can make managers setup more ap-

propriate policies. 
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