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m Abstract =

Yield management, which originated from the U.S. service industry, uses pricing techniques and information systems
to make demand management decisions. Demand uncertainty is an important factor in the area of demand manage-
ment. A key strategy to reduce the effects of demand uncertainty is substitution. The most generally known type of
substitution is inventory-driven substitution, in which consumers substitute an out-of-stock product by buying a similar
or other type of product. Another type of substitution is the price-driven substitution, which occurs as a result of price
changes. In this research, we consider two market segments that have unique perishable products. We develop vield
management optimization models with stochastic demand based on the newsvendor model where inventory-driven and
price-driven substitutions are allowed between products in the two market segments. The most significant contribution
of this research is that it develops analytical procedures to determine optimal solutions and considers both types of
substitution. We also provide detailed theoretical analysis and numerical examples.

Keywords : Pricing, Substitution, Service Industry, Yield Management
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1. Introduction

Yield management (YM) employs the appli-
cation of “information systems and pricing
strategies to allocate the right capacity to the
right customer at the right place at the right
time.” YM set prices for the forecasted de—
mands, and price sensitive consumers will buy
the same product at different prices at off-peak
or peak times [5]; therefore, it is very sensitive
to demand uncertainty. Yield management
techniques have been developed for service in—
dustries for a long time to overcome demand
uncertainty. Perishable products are common
object in service industry, and food stores are
good examples for perishability. Managers of
a food store (for example, coffee & donut
stores) decide the number of donuts to order
or bake every morning. Also, perishable prod-
ucts in retailing such as fashion goods have
multiple demand classes. In retailing area,
product variety management has grown signi-
ficantly. Many researchers pointed out that
product variety increases product operations
costs because of demand uncertainty. Many
strategies to reduce the impact of demand un-—
certainty have been developed. One of the most
important well-known strategies is substitu—
tion. Different variations of the same product
(e.g. different color, flavors etc.) are good sub—
stitutable product each other. Substitution plays
a key role in determining the exact demands
under demand uncertainty.

Newsvendor problems have been used wide—
spread for optimization of perishable products
in service industry. The classical newsvendor
problem focuses only on deciding the optimal

ordering level without considering demand
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movement to maximize his expected profit [24,
25]. Customers will purchase initially requested
products as long as the price compares favor-
ably to the prices of similar substitutable prod-
ucts; however, if the price differences between
the similar products becomes large, demand
movement occurs. The cross elasticity of de—
mand measures the responsiveness of the quan—
tity demanded of a product to a change in the
price of another product. Setting a lower price
for a product may increase potential customers
and setting a higher price for the same product
increase profit margin but may lead movement
of potential customers to buying different
products. This type of demand movement is
called price-driven substitution. The most gen—
erally known type of demand movement, which
1s called inventory—driven substitution, occurs
when consumers substitute for a product that
is out of stock by buying a similar substitutable
product [1, 2, 5, 6, 11, 15, 17, 19, 20, 7].
YM is concerned with demand-management
decisions and the methodology required making
them, and it uses the three basic demand-—
management decisions : structural decisions,
pricing decisions and quantity decisions. Firms
have to adjust price and capacity level decisions
by advertising prices or capacity decisions in
advance. If the decisions affecting demand as-
pects (e.g. types of customers, different type
of products to sell, time, purchase behavior, etc.)
are independent the decision making problem
is very simple. But demand-management is far
more difficult. Demand decisions for different
products and customers are closely linked to
the information by the firm. Customer purchase
behavior depends on customers’ heterogeneity.

Customers in the service industry certainly ex-—



hibit these characteristics. For example, a cus-
tomer who prefers a higher quality product may
choose to buy a lesser quality product because
of its lower price. Customer buying behavior
is also dependent on other factors such as
stock—outs. Demand functions might consist of
buyers’ different behavior components. The
substitution effect for a product with temporary
stock-outs is one of the elements that affect
the demand function significantly. Customer
response to the stock-outs is divided among
these possibilities: substitute the item they
sought, delay the purchase, or leave without
purchasing. Stock-outs may negatively affect
the image of the brand or the store so that under—
standing customers’ response to stock-outs will
lead to better policies for pricing and production
decisions. This kind of substitution can also
be found in the retail market as well as airlines.
Business class seats on airplanes can be sub-
stitutes for economy seats. Customers who ini—
tially intend to buy economy seats but cannot
buy them may buy business seats. Likewise,
low—capacity microchip customers may buy a
high—capacity microchip if they cannot buy a
low—capacity microchip that is cheaper than
the high-capacity one.

Most research papers in operations research
and management science, operations manage-
ment have considered inventory—driven sub-—
stitution models and rarely considered price—
driven substitution. However, understanding
the potential substitution effects on pricing and
production decisions is very important in mak-
ing production plan. Inventory-driven sub-
stitution research has been studied by many
authors. Examples of this research include

Karaesmen and van Ryzin [10], Rao et al. [17],
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Dong et al. [3], Dutta, and Chakraborty [4],
Shumsky, and Zhang [19], Wang and Kapuscinski
[23], Zhao et al. [27], Karakul and Chan [9].
Kuyumcu and Popescu [14] studied joint pric—
ing and inventory control by considering de—
terministic optimization models for multiple
substitutable products, and they showed that
the optimization problem could be reduced to
a pure pricing problem. Karakul and Chan [3]
considered stochastic optimization problems,
which are a joint pricing and inventory deci—
sion, for an existing product and a new im-
proved production decisions. The authors de-
veloped an in—-depth mathematical procedure
for finding optimal solutions for the stochastic
problem with inventory-driven substitution.
Research on optimization models with price—
driven substitution has been done by a few re—
searchers e.g. Kocabiykoglu and Popescu [13],
Kim [11], Lus and Muriel [15], Tang and Yin
[22] and Yu [26]. Lee and Kim [7] developed
an optimal pricing and production decision
model with price-driven substitution alone,
where a part of the demand lost in one market
moves to the other market. Lus and Muriel [15]
considered deterministic pricing/quantity de-
cision problems with two substitutable prod-
ucts and compared two alternative measures
of product substitutability for linear demand
functions. Tang and Yin [22] explored joint
pricing and ordering policies for two sub-
stitutable products with deterministic price—
dependent demand. They considered price—
driven substitution alone. Yu [26] studied joint
pricing and inventory decisions with price—
driven substitution for two substitutable prod-
ucts, where there was a resource constraint

for the two market segments.



In this research, we study demand-manage-—
ment decisions in YM. We develop a single-
period model for deciding optimal prices and
capacity levels where the firm has flexibility
to allow both inventory-driven substitution
and price—driven substitution for the two sub-
stitutable perishable products. We add both in—
ventory—driven and price—driven substitution
into joint pricing and capacity decisions based
on the traditional newsvendor model. We de—
velop the solution procedures to gain an under—
standing of the relationship between sub-
stitution and optimal solutions. The main con—
tribution of this research is that we consider
both price-driven and inventory-driven sub-
stitution at the same time, and we focus on
demand substitution as a function of price dif-
ferences based on an asymmetrical demand
function. We consider stochastic optimization
models rather than deterministic ones. The im-
pact of substitution on the optimal price, pro—
duction level and the expected revenue will be
illustrated by numerical examination how opti—
mal pricing and production decisions are
affected.

2. The Mathematical Model

There are two segmented markets, and de—
mand substitution occurs as a result of not only
price changes but inventory stock-outs. The
unit price in market A is higher than the unit
price in market B. We consider the two seg—
mented markets where the demands are classi-
fied by different market segment and price.
Initially, the demands are assumed to be in—
dependent, identically distributed with known

parameters and distributions. Later, demand

dependencies are created by substitution. We
assume that a price—driven substitution is re-
alized from a market with a high—priced prod-
uct (A) to a market with a low—priced product
(B). We also assume that the demand in each
market segment is dependent on the prices of
both markets. Under the above assumptions,
the revenue manager or supply chain manager
has to confront a situation for determining the
production quantities and prices. We discuss
on how the decisions regarding prices and pro—
duction levels are made. The following notation
will be used throughout the paper :

r,q - ratio of price-driven substitution

p ° price—driven substitution rate

r,, - ratio of inventory—driven substitution
r . unit price of product A

: unit price of product B

. per—unit variable cost of product A
. per—unit variable cost of product B
d, : demand for product A

d, : demand for product B

I : capacity level of product A

I, ' capacity level of product B

f(-) @ pdf
F(-) : cdf
[ -] : total expected profit

First, we consider that consumers substitute
for a product that is out of stock by buying
a similar substitutable product. If there are
customers who cannot buy product A (at the
price of r,) then a fraction of the unsatisfied
customers will shift to market B to buy product
B at the price of r,. In market B, the actual
demand is the original demand for product B

plus the diverted demand from market A.



Therefore, customers of both classes buy pro-
duct B. The demands are assumed to be real—-
ized sequentially over time. The customers
who prefer to buy high—priced products arrive
before those who prefer low-priced products.
This kind of one-way substitution problem is
frequently found in the retail industries. For
example, in the retail stores that sell perishable
items, some customers who prefer to buy the
product on the first day when the item is fresh-
est and more expensive while other customers
may buy less expensive products on the second
day or later. Then, the actual sales at the two

markets are given by :

Market A : min{d, I,}
Market B : min{d,+max{r,,(d,~1,), 0}, 1}
We begin with a capacity level decision alone.
The firm has to decide the optimal quantity
of each product at given prices. We assume
that a fixed fraction of customers who cannot buy
a high-priced product may buy a low-priced
one. But we do not consider price-driven sub-
stitution simultaneously. Under these assump-

tions, the optimization problem to consider is :

{/ d.f.(d, dd,,+[ 1,f.(d dd} )
./;)“/Uhdbfh(db)dd,,f"(da)dda

+ /I”/wlbfb(db)ddbfa(da)dd

Iy

Maximize 7 [1,, ,] =
1,

db+r (d,~1,))

la

fa ( d,)dd, f,(d,)dd,

by
+ / / 1, (11 lbf
s [ f L, (d,)dd,f, (4, ad,
L Y,

—ped,

+r,

)dd, f,(d,)dd,

—peyly
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o
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The expected profit function (A) is jointly
concave so that there is a unique optimal sol-
ution : a unique maximum of (A) over I, and
I, for r, >r,. The expected profit function is con—
cave in [, for a given I, and is concave in I,
for a given I,. The profit function is also jointly
and I,. The first derivatives with

and I,

concave in [,

respect to I, are as follows :

orll, 1 l, I,—d,
Tae bl 1= ) e [ ) R0
al, 0 Tid
£(dy)dd, = pe, (1
om [, 1, b l,—d,
:rblbe(lb)Jr/ 1—F|——+1,
al, 0 id
fb(db)ddb}7 pa, (2)

The sufficient conditions for the existence
of a unique maximum are satisfied as follows,

where He denotes Hessian :

W (1,—
Hey ==r,f(l,)— Tfrlrhf {f/)( [ .
0 T

fo(dy)dd, <0

I, 1
Hey ==, fb b F( a +f

3
2 . —_
Hey Hey— Hiy = {_ rofolly) ’uﬂ“b/
0

b z(,)f fl,(la)]

id

+l )fb(db)ddb] 0

d“ hod } 1 <zn)}f,,<db>ddb}

2

b l,— 4,
{fa[b,,,—/u lb} }f,,<db>ddb)
>t v 1,00 5000

|
el

4 lb}fb(db)ddb}> 0

Tid

After simplification from (1) and (2) we have



the optimal capacity levels, I, and I, :

a’

r,—pc, =1, (r,—pc,)

Ta _TidTbe(l;)
T(L(I_EL(ZZ))_pC(L

TiaTo b (ZZ)

F@)=

a

* Ty, — PG
F;) (lb ) = - *b -
’er;L (lu)

From above, if r, —pe, —r,,(r,—pe,) <0, then (1)
is always negative and [, =0. If r,,=1.0, then
it is not beneficial to manufacture product A
when the unit profit of product A is less than
the unit profit of product B. If the unit profit
of product A is sufficiently smaller than that
of product B where 0.0<r,<1.0 and r, —pc, <
r,,(r,—pc,); it is not beneficial to manufacture
product A. Similarly, when r,,(r,—pc,)>(r,—
pe,)+a, that is, if the unit profit of product A
is sufficiently smaller than that of product B,
then (2) is always positive and the optimal
quantity of product B 1is arbitrarily large.
Considering (1) and (2), the first-order con-
dition has an intuitive interpretation. Without
the second term of (1) the optimal solution is
equivalent to the single-period newsvendor
problem with zero holding and shortage costs.
The optimal quantity of product A is always
less than the optimal solution of the equivalent
newsvendor problem. If substitution ratio is 0,
then the problem (A) becomes the newsvendor
problem with zero holding and shortage costs.
The optimal quantity to manufacture for market
B is always greater than that of the equivalent
newsvendor problem because the substituted
demand flows from market A to market B. If
there is any substituted demand between the
markets, then the optimal solutions have to be
adjusted from those of the newsvendor pro-

blems. As the substitution rate increases, the
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optimal quantity of product A is decreased while
the optimal quantity of product B is increased.
The price of product A affects the decision of
the optimal level of product B and the price
of product B also affects the decision of the
optimal quantity of product A. For the reverse
case of r,<r,, where the customers who prefer
low-priced products arrive before those who
prefer high—priced products, we show that this
case has the same form of unique optimal sol-
utions as that for the case when the customers
who prefer high-priced products arrive before
those who prefer low-priced products as long
as r, >r,r,. For r, <r, there exists a unique
maximum of (A) over I, and I,. The expected
profit function is concave in [, for a given 1,
and is concave in [, for a given [,. The expected
profit function is jointly concave in I, and I,
if r,>r,,r, (See the proof of proposition 1; if
r, >r,,m, then He  He,,— He}, >0).

We now consider price—driven substitution
as well as inventory—driven substitution. We
consider the optimization model by examining
the optimal pricing decision under stochastic
demand below. We present the linear stochastic

demand model used in this research as:

d,(r,rye)=v,—wr, —Tp (r,—r,)+e,

d, (Tw Ty Eb) =v, —wyr, o, (Tu - Tb) +te,

Consider a firm that manufactures and sells
two similar products which may substitute each
other there are two segmented markets and de-
mand substitution occurs as a result of not only
inventory stock-outs but price differences as
well. The error terms e, ¢, are assumed to be
independent each other and price-independent:

Ele] =0, var[e]=0" r,, is a factor of price-driven



substitution and r,, >0. We assume that the
parameters of the demands are carefully chosen
so that the probability of negative demand is
entirely zero and can be ignored. Note that p
is the price-driven substitution rate and
0.0 < p < 1.0. We substitute d, (r,, r, ¢,)=p, (r,, )
+e,, d(r, 7, €)= pm(r, r,)+e and define new
variables: sf, =1, —pu,(r,,r,) and sf, =1, —p, (r,,
r,). Let error terms ¢ have p.df. of f (-) and
cdf of £ (-) for i=a, b. The contribution max-
imization problem (A) can be transformed as
follows :
Miximize 7 [r,r,] = ra,{ f " g )+ e,)f (e,)de,

[ 0

+ f;(ua(ra, Tb)Jrsfu)fﬁ’(Eu)dEa}

sfy
f (Nb(rm T),) + €b>fq(€b)d€b
F(sf) |70
S AT

s,

sy T'Jran
+/ / ‘ (i (roy 7)) + e+ ri9le,— s£.)

0 sfa

+7r, ffq(Ea)denfﬂ,(fb)dgb B)
sfy, oo

* ‘/;) fﬁf"rJJrsf,,(‘ub (Tm Tb) + Sfb)

foledef, (e,)de,

+ /:’ f :wm r)+ sf)f, (e)def, (¢,)de,

= pC (1o (1o 7))+ 5f0) = pey (uy (v 7)) + 5 £3)

where :

Qa(sfa) = \/\jf“(sfa* z)ffﬂ(z)dz, Y(sfa)

= fm(z —sfJ)f (x)dz

sfa

2,(sf,)= fzy' (sfy—a)f (z)dx, Y(sf,)

—

= fm(z = sf)f (z)de

sf,

and T(r,|sf, sf,) =

sfy oo
- +/ﬁ /m_q fobff“(z)dlfq,(z)dy

+/:/:sfbfiu(z)dzfq(x)dy

and
E,(re m) = (ra=pe)pa(ry r,),
L(rolsf,) =pes2,(sf,) + (ry—=pe) Yo (sf,)
Sy (ry ) = (ry=pey )y (r oy 1),

L(ry 1 sf0 sf1) = pe2y(sf,) + (ers"(Sfa) =)y (sfy)

We finally have a transformed contribution

maximization problem for the model (B):

Maximize nlr, r,lsf, sf,l = Z.(rp ) ©)
- Fu(ru ‘ Sfu) + Eb<ra7 Tb) - Fb(rb ['sfo Sfb)

+ T(rb\sfa7 sfb)

We also consider the decision of optimal sf,,
sf, at a given price based on the above ap-

proach :

Maximize [sf,, sf, |r,, r,] (D)
st sf,

There exists a unique maximum of the trans—
formed profit function in (C) over r, >r, >0
at given sf, and sf,, and this is also the case
for model (D). Consider the first derivatives

with respect to price:

y: 2wy + 1) (Fo 1) — Yalsf)
a1 1) _
oy 2wy + pr) (ry—ry) = F, (sf )0, (sf,)

+6(3fm sz,)

where



z v, + 1y + (W, + ) pe, + prog(r, — pe,)
a 2(w,+ rpd) ’
. vy, + PTpdl + (u)b + prpd)pcb + rz)d(ru — pca)
b 2(w, + pr )
and

/ /Sf’ (e, +rigle,—sf ) f (z)daf, (z)dy

5(sfow sfy) = +/ /sf, o, Sfbf
+/ /s shuf (@)daf, (x)dy

e)dzf, (a)dy

To ensure that a unique maximum exists,
we show that the sufficient conditions are

satisfied. The second derivatives are:

a*rlr, r,l

T:*Q(wa-ﬁ-rﬂ,) <0,

8%r[r, r,)

————=—2(w, + pr,) <0
Brﬁ b T P pa

If 4(w, +7’Pd)(wb +prpd) —(1+p)? 7";(1 >0, then the
sufficient conditions for the existence of a
unique maximum are satisfied. From the first

derivatives, the optimal prices are given by :

e~ Y(sfl)
Ta=Ta Q(wa+rpd)
. P sf)0(sf)  6(sf, sf,)
Mo =Ty 2(wb+prpd) ' 2(u)b+prpd)

Eliminating decision variables leads us to:

v 20wyt pro)lvg+ (0o + r)pea— priape, — Yo(sf,)]
4w, +1,0) (W, + prog) — 72,1+ p)?

(1+ p)r glv, + (w, + prog)pe, — 7y pca
B, (51,1, (s1,) + 351, 51,5
4(wa+rpd)(wb+prpd)7rgd(1+p)2
_x (1 +p>"'[~1[(1_ FQ‘(S.fa»Y),(Sf),) + 5(3fm Sfb)]
=r ;
4(w, +rpd)(wb+prpd)* Iz,d(1+p)2

a

2(a) +rpd vb u)b+p pcb dpca
9f Yy (sf,) + 0(sf 0 9fb

4(u)b + prpd)(u)aJr rpd) — rpd(l + p)

Ty =

o

e

1+ p)rpalvy + (w,+ m0)pc,— prjape, = Ya(sf,)]
4(u}b + prpd)((uawL rz)d) — rf)d(l + p)2

F (sf )Yy (sf,) +8(sfp 5f3)]

4(wb+ prpd)(wu+ rpd) — rf}d(l + p)2

- Q(waJrrpd)[(l*
=r,+

’

where ?: and FZ are equal to the optimal pri—
ces of the stochastically equivalent model
which considers only price-driven substitution.
The optimal prices are unique solutions for
model (C).

The optimal prices are affected by the ca-
pacity levels of both products. If we set the
capacity level sufficiently high in order that
there is no substitution demand as a result of
stock-outs, then the contribution maximization
problem (B) is identical to that of the stochastic
price~driven substitution model. Since (sf,, sf,)
are fixed values in this model, Y,(sf,), Y,(sf;)
and §(sf,, sf,) are also fixed values, and §(sf,,
sf,) can be either positive or negative. Related
to capacity level decisions, sf,, sf, provides an—
other interpretation of the production decisions.
If sf, is bigger than the value of e, then leftover
occurs; if sf, is smaller than the value of e,
then shortage occurs. We consider the decision
of a set of the so called optimal stocking factors
sf,, sf, at given fixed prices. The first de—

rivatives with respect to sf,, sf, are:

o [sfa, af
bl B i £ o)

_ mn/m {F(pr sfa)* st(sfa)}

- id
fﬁ,(fﬁd%* c,

on [Sfa,v Sfb] o s sfy—
asfy 7”’{17/ F‘”( r;

— oo id

ot s )f[,(€b>d€b}7 pCy

The sufficient conditions for the existence

of a unique maximum are satisfied :



sfy -
—_Taff“(sf,,)—hdﬂ/ {fg(m‘* Sf,,)—ffn(sfa)}

- Tid

ffb(fb)dﬁh <0

TidV - id

L./‘sfbf‘“(@+ Sfa)

Hy == TII{FE"(Sfa)fg,(Sfb) +
f.()de,} <0
Hey Hey— Hely =

sfy
[ ra ot ran (610 [ s e

1 ‘/sz, sfy—¢€
S
{ Turb —oofeu( r

id

by sf,,)fq,(sb)dsb}> 0

Therefore, a unique optimal solution exists.
We finally consider the joint optimal pricing
and capacity level decisions (where there are
four decision variables). The transformed vari-
ables, sf,, sf, provides another interpretation
of the production decisions. If sf, is bigger than
the value of e, then leftover occurs. If sf, is
smaller than the value of ¢, then shortage
occurs. The first derivatives with respect to

sf,, sf, are:

onl-1_, (1= F.(s£.)) (3)

9sf,

i

fﬁl(eb)deb—pc

. sfy —
Bgﬁfb]:r,,{l— / Ff,,(sfi—ld%sfa,)ffxsb)de,,}—pcb (4)

—

The first derivatives with respect to price

are -
D] g b 1) (7 ) = X, 1) 5)
%:Q(wb+prpd)(;b_rb)_Fgu(sfu)ru(sfb) (6)

+0(sfu sfy)

The expected profit #[ -] has a maximum with

respect to sf,, sf, at a given r,, r,. Similarly,

7 -] is concave for r, r, at a given sf,, sf,.
Thus, the simultaneous solution of the equations
determines price and capacity level that max-
imizes the expected revenues. We obtain the
optimal solutions through the four simultaneous
equations. For (5) and (6) the optimal prices
can be written as functions of sf,, sf,. These
can be substituted into (3) and (4). Then, the
contribution maximization problem can then be
reduced to a two-variable search problem.
Consider the first and second derivatives of =[]
with respect to sf and r. The first derivatives

with respect to sf,, sf, can be rewritten :

sfy
“<Sfu)}_ Tzd’rb\/;

{F(Sf“—j% sfu)— f.(sf.) }fq,m)dsh ~pe,

or |
;rsf 77‘@{1

_ Y,(sf,)
{7 m}“ ~ et
{ (Y (sf) sty sfy) }
2(w, + prpa) 2(wy + pr )

fw{F(sfb

fo(e)de, — pe,

. sh —q
Bgs[f - {1—f FQK(SbeTE!*' Sfa,)feb(sb)dsb}_pcb

8(sfo sfy) }

-~ {~ Ff‘,(sfa)Yb(Sfb)
T 2w, + o7 pa) 2(wy + pr )

sfy sfy—
{1— f Fq'(si—ldeb‘F Sfu)fgb(sb)dsb}_pcb

-

+sfu)—FE“(sfu)}

The second derivatives with respect to sf,

and sf, are:

Cok[e] Y(sf,)
Hey = ﬁsfg = 2(wu+7'p41) [1_F§"(Sf(1)]
- Y, (s
[ s s o

{ ffu(sfa)Yb(Sfb)
R 2(u)b+prpd)

/7.

— o

8 (sfo sf) }
2(a)b+ prpd)

sfi—e¢
Tid

+ sf,l)— F‘“(sf,l)}f‘b(s,,)ds,7



~ Fg(sfu)rb(sfb)
"y 2(u),,+prpd)

sf sfr—€
f—oo[ff"( Tid

%[ -] __{ffﬂ(sfu)rb(sfb)
8sf3 - 2(wy + pr )

[1—/”&( shoa, )f)(e,,)deb}

{~ F.(sf, m(m) 8(sfu sfy) }
" 2(w, + pr ) 2(wy + pryg)
/‘ ff( sfy,—

o

5(Sfa,’ Sfb) }
Q(wb+prpd)

S st (e <0

Hegy =

8 (sfu sty) }
2 (u),, + prpd)

+.sfa) (e,)de, <0

Therefore, =[ -] is concave for sf, at a given
sf,, and Efr] is also concave for sf, at a given
sf,. The sufficient condition for the existence

of a unique maximum is satisfied if:

o[- o’ -]  o%r[-]
asf:  asf; 9sf,08f,

which is:

Y, (sf,) Y,(sf,)
B 2(w, +7 ) (1= F (sf)]= [ - 2(w, +1,) }ff"(sfa)
_ [_ fﬂ‘(sfu)Yb(sfb) 8 (sfa sf3) }
Tid Z(warprpd) Q(wb+prpd)

sf _
f,w{pﬁt(#'lrfm%-k sfb)— Fg(sfu)}fq(eb)de,,
~ Ffﬂ(sfa)Yb(Sfb) ‘ 8 (sfu sfy)
T Tid| Ty Z(w,,— ,07'1)(1) t z(wh+ /)TM)

sfy sf, —
/ Fs,((gf’;—ﬁ+ sfa)— Lﬂ(sfa)}fq,(eb)dsb

{ fg"(sf(L)Yb(sfb) ‘
- 2 (wb + prpd)

[1—/ fﬂ( sh— " +sf )f’(eb)deb}

6(sfw sfy) }

{~ F (sf )Y, (sf,)
e 2(w,,+prpd) Q(warprpd)

8 (sfw sfy) }
b 2(u)b + prpd)

sfy -
/ fq(sf;ier Sfa)fﬂl(ﬁb)dEb

o

e

{ F_(sf )X, (sf,)
T T (u) +prpd)

Il

_ FFIN(sh)  (sf, sf) | 1
T "o 2(wb+prpd) T

v 2(u)b + prpd)
st sf,— €
/w{fg( L

3 (sf0 sf1) }
2 (wb + prpd)

by sfa)— Fﬂl(sfa)}fﬂ’(eb)deb

+ Sfu)_ fesfy) }fq, (€,)de,

The optimal prices can be obtained from the

following two equations :

C o M)

Ta= Ty Q(qurrpd)
w_~ it Yy (sfy)

=T r (a)b+ prpd)

/ {( f;; +5f) ﬂ(sfu)}fﬂl(eb)deb
id

—

8(sfwsh)  ra—pe
(w+prpe)  rolw,+pr,y) °

The transformed variable, sf, represent the
stocking factor defined as sf, = u, +SFo, where
u, 1s the mean of ¢, and o, is the standard de-
viation of ¢, and SF denotes the safety factor.
SF=1, — Brpexted_Valueld, (r,. r,., ¢,)]/ Varianceld, (r, r,,¢,)] . 'The
optimal pricing and production decision is to
manufacture [ (=sf,+p,(r,r,)) units at the
price of r,,r, where sf, and sf, maximize the

total expected revenues.

3. Numerical Examples

Consider an example of the optimization mod—
el B where ¢, and ¢, follow a Uniform demand
distribution ranges : ¢t =15, v =10. Let v, =4,250,
w, =10, v, = 1,440, w, =5, pc, =200, pe, =200 and 180,
t=15, u=10, sf, =1, sf,=1 and r,, =1 and 5 The
optimal prices and the expected revenues as

a function of p(price-driven substitution rate)



are displayed in <Table 1>. From the results,
we see that the optimal price does not change
significantly when r, is small (as p increases)
while the expected revenues increase signi—
ficantly. Comparing the results of the stochastic
model with only considering price-driven sub-
stitution with those of our model in this research,
the optimal prices do not change significantly.
As p increases, the optimal price of products
A increases and that of product B decreases,

and the total expected profit increases.

(Table 1> Numerical Results for the Optimal Pricing
Decisions at Given sf, and sf,

(pe, =200, pe, =200, sf,=1.0, sf,=1.0)

(7,4 =1, inventory-driven substitution rate, r;, =0.1)

p| 00 | 01 03 | 05 | 07 | 09 1.0
7, | 304.58 | 304.83 | 305.31 | 305.81 | 306.30 | 306.80 | 307.05
r, | 254.03|254.02 | 254.01 | 254.04 | 254.07 | 254.12 | 254.15
71| 1.2733| 1.2761 | 1.2816 | 1.2872 | 1.2928 | 1.2985 | 1.3013

! (in 100,000s).

(7,4 =5, inventory-driven substitution rate =0.1)

p| 00 | 01 | 03 | 05 | 07 | 09 | 10

11
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(pc, =200, pc, =180, sf, =1.0, sf, =1.0)

(r,4 =1, inventory-driven substitution rate r;; =0.1)
p| 00 | 01 | 03 | 05 | 07 | 09 | 10
7, |304.12 | 304.41 | 305.00 | 305.58 | 306.16 | 306.75 | 307.05
r, | 2439824397 | 243.98 | 244.01 | 244.05 | 244.11 | 244.15
7113126 | 1.3164 | 1.3242 | 1.3320 | 1.3399 | 1.3479 | 1.3520

! (in 100,000s).

(Tpd =5, r,,=0.1)

p| 00 | 01 | 03 | 05 | 07 | 09 | 10
. |287.80]28379|290.83 | 292.94 | 295.13 | 297.41 | 298.58
7y | 277.47|274.01 | 26893 | 265,51 | 263.19 | 261.64 | 261.08
7" [1.1854| 1.1915{1.2083 | 1.2299 | 1.2549 | 1.2829 | 1.2978

=1, inventory—driven substitution rate r;; =0.1=0)
p | 00 0.1 0.3 05 | 07 09 1.0
. 1304.14{304.43 | 305.01 | 305.60 | 306.19 | 306.78 | 307.07
ry | 24431 244.30 | 244.29 | 244.31 | 244.34 | 244.39 | 244.43
7" 1.3206 | 1.3244 | 1.3322 | 1.3400 | 1.3480 | 1.3560 | 1.3600

(r,=5, r,;,=09)
p| 00 | 01 | 03 | 05 | 07 | 09 | 10
287.86 | 288.52 | 290.89 | 293.00 | 295.19 | 297.47 | 298.65
277831 274.32 | 269.21 | 265.76 | 263.42 | 261.84 | 261.27

r, | 289.621290.44 | 292.13 | 293.80 | 295.71 | 297.61 | 298.58

P

7 | 1.1945|1.2004 | 1.2172 | 1.2386 | 1.2636 | 1.2915 | 1.3063

7, | 28337 | 284.83 | 279.58 | 275.99 | 273.48 | 271.73 | 271.08
7 11.1801 | 1.1817 | 1.1892 | 1.2011 | 1.2162 | 1.2336 | 1.2431

=1, inventory-driven substitution rate =0.9)

p| 00 | 01 03 | 05 | 07 | 09 1.0
r, | 304.60 | 304.84 | 305.33 | 305.83 | 306.32 | 306.82 | 307.07
7y, | 254.36 | 254.34 | 254.33 | 254.34 | 254.36 | 254.40 | 254.43
r | 12817 | 1.2844 | 1.2900 | 1.2955 | 1.3012 | 1.3068 | 1.3097

(7,4 =5, inventory-driven substitution rate = 0.9)

o | 00 0.1 0.3 05 0.7 0.9 1.0
, | 289.68|290.50 | 292.16 | 293.95 | 295.78 | 297.67 | 293.65
r, | 288.74|285.16 | 279.86 | 276.24 | 273.71 | 271.94 | 271.27
7" 11.1896 | 1.1910| 1.1984 | 1.2101 | 1.2251 | 1.2425 | 1.2510

We now demonstrate numerical examples
for the four—variable decision problem) where
¢, and ¢, follow a Uniform demand distribution.
Let pe, =200, pc, =200 & 180, v, =4,250, w, =10,
v, =1,440, w, =5, t=15, w=10 and r,,=1 and 5.
The numerical solutions for the joint pricing
and capacity level decisions were done by
standard numerical search procedures using
<Table 2> displays the numerical results for
the joint optimal prices and capacity levels as
a function of p (price-driven substitution rate).
As p increases at a given r,, (inventory—driven
substitution rate), the optimal capacity level of
product B increase while the optimal capacity



levels of product A decrease. We consider the
two cases for r;, = 0.1 and 0.9. Compared with
the results of optimal pricing decision problem
(B) in Table 1, the total expected profit increases
but the optimal prices are very similar for any
r,qo and p. If we choose different values of sf,
and sf, the optimal prices also changes signi-
ficantly. The optimal capacity level change sig—
nificantly as r, and p changes.

{Table 2> Numerical Results for the Joint Optimal
Prices and Capacity Levels
(pc, =200, pc, =180)

(7,4 =1, inventory—driven substitution rate r;; =0.1)
p | 00 01 03 05 | 07 | 09 1.0
303,955 | 304.246 | 304.828 | 305411 | 305.997 | 306584 | 306.879
ry, | 2437795 | 243.814 | 243.822 | 243.850 | 243.897 | 243.961 | 243.999
1144.801 | 1141.944| 1135588 1129.242| 1122.882| 1116.530|1113.340
I; | 216220 | 221.679 | 233.89 | 246.232 | 258,684 | 271.254 | 277583
ot 13224 | 1.3258 | 1.3336 | 1.3414 | 1.3493 | 1.3573 | 1.3613

! (in 100,000s).
(r,4=5, 7,4=0.1)

p| 00 | 01 03 | 05 | 07 | 09 1.0

o

e

(pc, =200, pc, =200)

(7,4 =1, inventory-driven substitution rate, r;; =0.1)

p | 00 0.1 03 05 0.7 09 10

7. | 304414 | 304,659 | 305149 | 305.641 | 306.134 | 306.630 | 306.878

r, | 253822 | 253817 | 253.821 | 253.842 | 253.880 | 253931 | 253.963

1, |1150.199|1147.5161142.162|1136.804|1131.451 {1126.079] 1123.399

1, 1165038170146 | 180437 | 190.832 | 201.319 | 211.914 | 217.240

| 12839 | 12867 | 1.2922 | 1.2977 | 1.3033 | 1.3090 | 1.3118

! (in 100,000s)

=5)

p | 00 0.1 03 05 0.7 09 10

280451 | 290.264 | 291.955 | 293.709 | 295531 | 297.426 | 293.402

. |1342.557|1312.919(1261.516|1217.440|1177.768| 1140.775| 1122.927

7, | 283148 | 284641 | 279.399 | 275.814 | 273315 | 271571 | 270.915

I | 0 | 14775 | 56861 |100.581 | 146.012 | 193.262 | 217.604

7' | 11901 | 11923 | 11993 | 1.2117 | 1.2267 | 1.2441 | 1.2536

(r,q =1, inventory-driven substitution rate, r,, = 0.9)

p | 00 0.1 03 05 0.7 09 10

7. | 304.339 | 304,635 | 305129 | 305.624 | 306.120 | 306.618 | 306.868

v, | 254.280 | 204.274 | 254258 | 25A.262 | 204.284 | 254.321 | 254.346
. [1149.462|1146.763| 1141.358|1135.960|1130.567| 1125.167|1122.462
I, |167.932]173.035 | 183.312 | 193.691 | 204.267 | 214.747 | 220.070
7" | 12862 | 12880 | 1.2935 | 1.2991 | 1.3046 | 1.3103 | 1.3131

(ry=5)

7, | 287.634 | 283614 | 290.647 | 292.759 | 294.952 | 297.232 | 298.407

p | 00 0.1 03 05 0.7 09 1.0

r, | 271270 | 273.844 | 268771 | 265.352 | 263.046 | 261.492 | 260.935

7, | 280452 | 290.284 | 291.986 | 293.747 | 295.574 | 297472 | 298500

I, [1315.195(1283.471|1227.810|1179.272|1134.978|1093.184|1072.863
I, | 49408 | 73787 | 124448 | 177.073 | 231.759 | 288634 | 317.927
7| 11952 | 12012 | 12180 | 1.23% | 1.2645 | 1.2923 | 1.3072

(r,; =1, inventory-driven substitution rate r,, =0.9

p| 00 | 01 03 | 05 | 07 | 09 1.0

7, | 303.913 | 304.206 | 304.792 | 305.380 | 305.969 | 306.560 | 306.857
| 244.396 | 244.378 | 244.361 | 244.368 | 244.30 | 244.440 | 244.469
1, [1144.036|1140.836|1134.420| 1128.016|1121.6181115.220| 1112.005
I, 219337 | 225391 | 237.588 | 249.900 | 262.339 | 274.888 | 281.211
7" | 13240 | 1.3278 | 1.3355 | 1.3434 | 1.3513 | 1.3592 | 1.3632

(r,g =5, 1,4 =0.9)
p| 00 | 01 | 03 | 05 | 07 | 09 | 10

r, | 287,673 | 283600 | 290.661 | 292.784 | 294.986 | 297.272 | 208443
7y | 278.166 | 274.328 | 269500 | 265.949 | 263539 | 261.918 | 261.334
I, 11310.7351281.614|1205.824|1177.194|1132.790|1090.920| 1070586
I, | 59645 | 80.760 | 130.487 | 182.618 | 236.991 | 203.647 | 322.850
7| L2008 | 12069 | 1.2221 | 1.2432 | 1.2680 | 1.29%6 | 1.314

r, | 280.103 | 285418 | 279.999 | 276.304 | 273.730 | 271.931 | 271.253
o |1341.940|1311.816|1260.196|1215.965|1176.179|1139.104|1120.465
I, | 0072 | 20.087 | 61.624 | 105.006 | 150.208 | 197.285 | 221.830
n' | L1947 | 11959 | 1.2029 | 12145 | 12292 | 1.2465 | 1.2560

We now compare the expected profits of dif—
ferent optimization models. <Table 3> presents
the expected profits for the eight different cases
including the numerical results of the model
with price-driven substitution alone (which do
not consider inventory-driven substitution). In
<Table 3>, ='! represents the total expected
profit for the traditional newsvendor model
where r, =290, r, = 255 or r, = 305, r, = 244. In
this case, we consider a price—driven sub-—
stitution for the demands of both products. The



expected profits for the traditional newsvendor
model are also shown at the first row in the
tables. 7! represents the total expected profit
for the joint pricing and production decision
model with price-driven substitution alone
Simultaneous control of prices and capacity lev—-
els improves the expected profit. Considering
both types of substitution also affects the total
expected profit improving. In the joint pricing
and capacity level decision model, inventory-
driven substitution rate is also important factor

which affects the total expected profit.

{Table 3> Comparison of the (optimal) Expected
Profit of Various Models

(pe, =200, pc, =200)

(r,y=1)

p| 00 ] 01 | 03] 05| 07| 09| L0

7112606 - - - - - -

72| 1.2609| 1.2628 | 1.2667 | 1.2705 | 1.2743 | 1.2782| 1.2801

7" 1.2624|1.2643| 1.2682 | 1.2720 | 1.2759 | 1.2797 | 1.2817

7™ 1.2830(1.2860| 1.2910 | 1.2970 | 1.3030 | 1.3080 | 1.3110

77 1.2733|1.2761 | 1.2816 | 1.2872| 1.2928 | 1.2985 | 1.3013

76| 1.28171.2844|1.2900 | 1.2955| 1.3012 | 1.3068 | 1.3097

77| 1.2839|1.2867|1.2922 | 1.2977| 1.3033 | 1.3090 | 1.3118

(ry=5)

p[ 00 o1 03] 05[07[09]10
L6 - | - | - | - | - | -

7% 10229 | 1.0362 | 1.0631 | 1.0899 | 1.1168 | 1.1436 | 1.1570

11,0237 1.0371 | 1.0640 | 1.0908 | 1.1176 | 1.1445 | 1.1579

11801 | 1.1817 | 1.1892 | 1.2011 | 1.2162 | 1.2336 | 1.2431

™
74| 11880 | 1.1920 | 1.1990 | 1.2110 | 1.2260 | 1.2430 | 1.2530
™
™

"011.1896(1.1910 | 1.1984 | 1.2102 | 1.2251 | 1.2425 | 1.2510

7| 11901 | 1.1923 | 1.1988 | 1.2117 | 1.2267 | 1.2441 | 1.2536

78| 11947 1.1959 | 1.2029 | 1.2145 | 1.2292 | 1.2465 | 1.2560

' The expected profit of the newsvendor model when
r, =305, r, =244,

? The expected profit of the capacity level decision model
when r, =305, r, =244, r,;=0.1.

% The expected profit of the capacity level decision model
when r, =305, r, =244, r,;=0.9.

* The expected profit of joint pricing and capacity level
decision without inventory-driven substitution

® The expected profit of the pricing decision model when
ry=0.1, sf,=1.0, sf,=1.0.

% The expected profit of the pricing decision model when
ry=0.9, sf,=1.0, sf,=1.0.

" The expected profit of the joint pricing and capacity
level decision model when r,,=0.1.

8 The expected profit of the joint pricing and capacity
level decision model when r,,=0.9.

% (in 100,000s).

(pe, =200, pe, =180)

(Tpd :1)

7% 1.2852 ] 1.2880 | 1.2935 | 1.2991 | 1.3046 | 1.3103 | 1.3131

p |l 00 | 01 03 | 05 | 07 | 09 1.0

' The expected profit of the newsvendor model when
r, =290, r, =255.

% The expected profit of the capacity level decision model
when r, =290, r, =255, r,, =0.1.

3 The expected profit of the capacity level decision model
when r, =290, r,= 255, r;,; =0.9.

* The expected profit of joint pricing and capacity level
decision without inventory-driven substitution; price—
driven substitution alone

® The expected profit of the pricing decision model when
ry=0.1, sf,=1.0, sf,=1.0.

% The expected profit of the pricing decision model when
rqg=0.9, sf,=1.0, sf,=1.0.

" The expected profit of the joint pricing and capacity
level decision model when r,;=0.1.

8 The expected profit of the joint pricing and capacity
level decision model when r,,=0.9.

% (in 100,000s).

T2e] - | - [ - [ - [ - | -

"211.2928 | 1.2955 | 1.3007 | 1.3060 | 1.3112 | 1.3164 | 1.3191

“11.3210]1.3250 | 1.3330 | 1.3410 | 1.3490 | 1.3570 | 1.3610

™
™
7% 1.2958 | 1.2984 | 1.3037 | 1.3089 | 1.3142 | 1.3194 | 1.3222
™
™

11,3126 1.3164 | 1.3241 | 1.3320 | 1.3399 | 1.3479 | 1.3520

7% 1.3206 | 1.3244 | 1.3322 | 1.3400 | 1.3480 | 1.3560 | 1.3600

x'7| 1.3224 | 1.3258 | 1.3336 | 1.3414 | 1.3493 | 1.3573 | 1.3613

7% 1.3240 | 1.3278 | 1.3355 | 1.3434 | 1.3513 | 1.3592 | 1.3623

' The expected profit of the newsvendor model when
r, =290, r, = 255.
> The expected profit of the capacity level decision model

when r, =290, r, =255, r;,;=0.1.
* The expected profit of the capacity level decision model
when r, =290, r, =255, r;,;=0.9.

* The expected profit of joint pricing and capacity level
decision without inventory—-driven substitution

® The expected profit of the pricing decision model when
ry=0.1, sf,=1.0, sf,=1.0.



% The expected profit of the pricing decision model when
rqg=0.9, sf,=1.0, sf,=1.0.

" The expected profit of the joint pricing and capacity
level decision model when r,,=0.1.

8 The expected profit of the joint pricing and capacity
level decision model when r,,=0.9.

"% (in 100,000s).

(r,4=5)

p | 00 0.1 03 05 0.7 09 1.0
1110650 - - - - - -
7 21 1.0657 | 1.0852 | 1.1242 | 1.1633 | 1.2023 | 1.2413 | 1.2609
71 1.0676 | 1.0872 | 1.1262 | 1.1652 | 1.2043 | 1.2433 | 1.2628
7 *1.1950 | 1.2010 | 1.2180 | 1.2390 | 1.2640 | 1.2920 | 1.3070
7?1 1.1854 | 1.1915| 1.2083 | 1.2299 | 1.2549 | 1.2829 | 1.2978
70111945 |1.2004 | 1.2172 | 1.2386 | 1.2636 | 1.2915 | 1.3063
7 7111952 | 1.2012 | 1.2180 | 1.2395 | 1.2645 | 1.2923 | 1.3072
71 1.2008 | 1.2059 | 1.2221 | 1.2432 | 1.2680 | 1.2956 | 1.3104

' The expected profit of the newsvendor model when
r.=305, r, =244,
% The expected profit of the capacity level decision model

when r, =305, r, =244, r;;=0.1.
% The expected profit of the capacity level decision model
when r, =305, r, =244, r;;=0.9.

* The expected profit of joint pricing and capacity level
decision without inventory—driven substitution

® The expected profit of the pricing decision model when
ry=0.1, sf,=1.0, sf,=1.0.

% The expected profit of the pricing decision model when
rqy=0.9, sf,=1.0, sf,=1.0.

" The expected profit of the joint pricing and capacity
level decision model when r,,=0.1.

8 Theexpected profit of the joint pricing and capacity
level decision model when r,;=0.9.

% (in 100,000s).

4. Conclusions

In this research, we study demand-manage-
ment decisions in Yield Management. We de—
velop a single—period model for deciding optimal
prices and capacity levels. Substitution is an
important factor in demand-management as—
pect in YM, and it has been actively researched
in the area of Management Science. Most of

the research papers deals with inventory-

o

e

driven substitution. In this research, we inves-
tigated the impact of demand substitution as
a result of both price differences (price-driven
substitution) and based on inventory stock-outs
(inventory—driven substitution) on the optimal
pricing and production levels and the expected
profits. We discussed structural properties of
the substitution model and managerial im-—
plications. If we effectively control multiple de-
cision variables, then we can improve the ex—
pected profit. The most significant contribution
of this research is to develop analytical proce-
dures for finding optimal solutions and we con-—
sider both types of substitution. We provide
detailed theoretical analysis and numerical
examples. Understanding the potential impact
of demand substitution as a result of price dif-
ferences as well as inventory stock-outs on
the optimal solutions between multiple market
segments, can make managers setup more ap—

propriate policies.
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