• Title/Summary/Keyword: the transcription factors

Search Result 1,098, Processing Time 0.027 seconds

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun;Choi, Yong-Geun;Lee, Ae-Ree;Seo, Yeo-Jin;Kwon, Mun-Young;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2014
  • The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.

NMR Study of Consensus DNA-binding Site for Arabidopsis thaliana Class I Transcription Factor AtTCP1

  • Choi, Yong-Geun;Kim, Hee-Eun;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • The TCP domain is a DNA-binding domain present in plant transcription factors and has a similar structural feature to the bHTH motif of eukaryotic transcription factors. The imino proton exchange study has been performed for the DNA duplex containing the consensus DNA-binding site for the AtTCP11 transcription factor. The first two base pairs in the consensus 5'-GTGGG-3' sequence are relatively very unstable but lead to greater stabilization of the neighboring two G C base pairs. These unique dynamic features of the five base pairs in the consensus DNA sequence might play crucial roles in the effective DNA binding of the AtTCP11 protein.

Enhancing the Solubility of Recombinant Akt1 in Escherichia coli with an Artificial Transcription Factor Library

  • Park Kyung-Soon;Lee Ho-Rim;Kim Jin-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.299-302
    • /
    • 2006
  • A combinatorial library of artificial transcription factors (ATFs) was introduced into the bacterial cells that expressed the Akt1-GFP fusion protein. By measuring the level of fluorescence generated by the transformed E. coli cells, we were able to obtain clones in which ATFs increased the solubility of the Akt1. Our results show that ATF library is a useful tool for increasing the solubility of selected recombinant proteins in E. coli.

Transcription Factor PU.1 Inhibits Aspergillus fumigatus Infection via Surfactant Protein-D

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2018
  • Aspergillosis is a life-threatening disease in individuals with compromised immune systems. Fungal invasion is a highly critical process during host cellular infection. Several papers have reported that transcription factors are responsible for the infection process. To investigate what transcription factors are involved in the process in an effort to inhibit fungal infection into cells, I checked the surfactant protein family and PU.1 transcription factor levels in A549 cells infected with A. fumigatus conidia. PU.1 and surfactant protein-D levels were reduced in cells infected with fungal conidia. I then observed an increase in surfactant protein-D on PU.1-overexpressed cells. Infection of A. fumigatus conidia was decreased in PU.1-overexpressed cells, whereas the suppression of PU.1 did not lead to any changes in cases of A. fumigatus conidia infection. These results indicate that PU.1 inhibits the infection of A. fumigatus conidia via the expression of surfactant protein-D, suggesting that PU.1 is a key transcription factor for protection against A. fumigatus invasion.

The WRKY Superfamily of Rice Transcription Factors

  • Jang, Ji-Young;Choi, Chang-Hyun;Hwang, Duk-Ju
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.110-114
    • /
    • 2010
  • WRKY transcription factors are known to be involved in many different biological processes including plant response to biotic stress, abiotic stress, and plant development. WRKY proteins are extensively studied in Arabidopsis. Recently, reports on WRKY proteins are rapidly increasing in the other plant species, especially in rice. Therefore, this review will discuss the function of rice WRKY proteins reported so far.

Etv5, a transcription factor with versatile functions in male reproduction

  • Eo, Jinwon;Song, Haengseok;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Transcription factors govern diverse aspects of cell growth and differentiation as major switches of gene expression. Etv5, a member of the E26 transformation-specific family of transcription factors, has many stories to share when it comes to reproduction. Etv5 deficient mice show complex infertility phenotypes both in males and females. In males, the infertility phenotype exhibited by Etv5 deficiency is sexually dimorphic, and it involves both somatic cells and germ cells. In $Etv5^{-/-}$ female mice, the problem is more complicated by hormonal involvement. This review synthesizes old and new information on this versatile transcription factor-from the inadvertent discovery of its role in the testes to its newly discovered role in maintaining spermatogonial stem cells.

Temporal Regulation of Ovine Interferon-tau Gene by the Transcription Factor Eomesodermin in the Peri-Implantation Period

  • Kim, Min-Su;Lim, Hyun-Joo;Lee, Ji Hwan;Hur, Tae Young;Son, Jun Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.292-299
    • /
    • 2019
  • Interferon tau (IFNT) regulation, an anti-luteolytic factor produced by conceptuses of the ruminant ungulates, is essential for the maintenance of early pregnancy, but a definitive mechanism for its temporal transcription has not been elucidated. We and others have observed the T-box protein eomesodermin (EOMES) exhibited high mRNA expression in the ovine embryonic trophectoderm; thus, both caudal-relatedhomeobox-2 (CDX2) and EOMES coexist during the early stages of conceptus development. Objective of this study was to examine the effect of EOMES on ovine IFNT gene transcription when evaluated with CDX2, ETS2 and AP1 transcription factors implicated in the control of cell differentiation in the trophectoderm. In this study, quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis between ovine trophoblast cells was initially performed, finding that transcription factors CDX2 and 'EOMES transcription factor mRNAs' were specific to trophectoderm cells. These mRNAs were also found in days 15, 17, and 21 ovine conceptuses. Furthermore, human choriocarcinoma JEG3 cells (trophoblast cell line) were cotransfected with an ovine IFNT (-654bp)-luciferase reporter (-654-oIFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with CDX2, ETS2 and AP1 increased transcription of -654-oIFNT-Luc by about 11-fold compared with transfection of the construct alone. When cells were initially transfected with EOMES followed by transfection with CDX2, ETS2 and/or AP1, the expression of -654-oIFNT-Luc was decreased. Also, EOMES factor inhibited the stimulatory activity of CDX2 alone. These results suggest that when conceptuses attach to the uterine epithelium, ovine IFNT gene transcription is down-regulated by an increase of EOMES factor expression in the attached ovine trophoblast cells.

Action Mechanism of Enhancers for Activating Gene Transcription

  • Yea Woon Kim;AeRi Kim
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2023
  • Enhancers are cis-elements to regulate transcription of cell/tissue-specific genes in multicellular organisms. These elements locate in upstream or downstream regions of target genes and are found in a long distance up to 100 Kb in some cases. Transcription factors and coactivators bind to enhancers in a chromatin environment. Enhancers appear to facilitate the transcription of target genes by communicating with promoters and activating them. As transcription activation mechanism of enhancers, chromatin looping between enhancers and promoters, tracking of enhancer activity to promoters along the intervening regions, and movement of enhancers and promoters into transcription condensates have been suggested based on various molecular and cellular biology studies. These mechanisms are likely to act together rather than exclusive each other for gene transcription. Understanding of enhancer action mechanism may provide a way to regulate the transcription of cell/tissue-specific genes relating with aging or various diseases.

The synergistic regulatory effect of Runx2 and MEF transcription factors on osteoblast differentiation markers

  • Lee, Jae-Mok;Libermann, Towia A.;Cho, Je-Yoel
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Purpose: Bone tissues for clinical application can be improved by studies on osteoblast differentiation. Runx2 is known to be an important transcription factor for osteoblast differentiation. However, bone morphogenetic protein (BMP)-2 treatment to stimulate Runx2 is not sufficient to acquire enough bone formation in osteoblasts. Therefore, it is necessary to find other regulatory factors which can improve the transcriptional activity of Runx2. The erythroblast transformation-specific (ETS) transcription factor family is reported to be involved in various aspects of cellular proliferation and differentiation. Methods: We have noticed that the promoters of osteoblast differentiation markers such as alkaline phosphatase (Alp), osteopontin (Opn), and osteocalcin (Oc) contain Ets binding sequences which are also close to Runx2 binding elements. Luciferase assays were performed to measure the promoter activities of these osteoblast differentiation markers after the transfection of Runx2, myeloid Elf-1-like factor (MEF), and Runxs+MEF. Reverse-transcription polymerase chain reaction was also done to check the mRNA levels of Opn after Runx2 and MEF transfection into rat osteoblast (ROS) cells. Results: We have found that MEF, an Ets transcription factor, increased the transcriptional activities of Alp, Opn, and Oc. The addition of Runx2 resulted in the 2- to 6-fold increase of the activities. This means that these two transcription factors have a synergistic effect on the osteoblast differentiation markers. Furthermore, early introduction of these two Runx2 and MEF factors significantly elevated the expression of the Opn mRNA levels in ROS cells. We also showed that Runx2 and MEF proteins physically interact with each other. Conclusions: Runx2 interacts with MEF proteins and binds to the promoters of the osteoblast markers such as Opn nearby MEF to increase its transcriptional activity. Our results also imply that osteoblast differentiation and bone formation can be increased by activating MEF to elicit the synergistic effect of Runx2 and MEF.

Transcription Factor for Gene Function Analysis in Maize (옥수수 유전자 기능 분석을 위한 전사인자의 이해)

  • Moon, Jun-Cheol;Kim, Jae Yoon;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.263-281
    • /
    • 2014
  • Transcription factors are essential for the regulation of gene expression in plant. They are binding to either enhancer or promoter region of DNA adjacent to the gene and are related to basal transcription regulation, differential enhancement of transcription, development, response to intercellular signals or environment, and cell cycle control. The mechanism in controlling gene expression of transcription can be understood through the assessment of the complete sequence for the maize genome. It is possible that the maize genome encodes 4,000 or more transcription factors because it has undergone whole duplication in the past. Previously, several transcription factors of maize have been characterized. In this review article, the transcription factors were selected using Pfam database, including many family members in comparison with other family and listed as follows: ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, and WRKY family. For analyzing motifs, each amino acid sequence has been aligned with ClustalW and the conserved sequence was shown by sequence logo. This review article will contribute to further study of molecular biological analysis and breeding using the transcription factor of maize as a strategy for selecting target gene.