Browse > Article
http://dx.doi.org/10.6564/JKMRS.2014.18.2.052

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors  

Kim, Hee-Eun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Choi, Yong-Geun (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Lee, Ae-Ree (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Seo, Yeo-Jin (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Kwon, Mun-Young (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Lee, Joon-Hwa (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.18, no.2, 2014 , pp. 52-57 More about this Journal
Abstract
The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.
Keywords
NMR; DNA binding; Hydrogen exchange; TCP transcription factor; base pair stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Herve, P. Dabos, C. Bardet, A. Jauneau, M. C. Auriac, A. Ramboer, F. Lacout, and D. Tremousaygue, Plant Physiol. 149, 1462. (2009).   DOI
2 M. Martin-Trillo and P. Cubas, Trends Plant Sci. 15, 31. (2010)
3 T. Taketa, K. Amano, M. Ohto, K. Nakamura, S. Sato, T. Kato, S. Tabata, and C. Ueguchi, Plant Mol. Biol. 61, 165. (2006).   DOI
4 K. Tatematsu, K. Nakabayashi, Y. Kamiya, and E. Nambara, Plant J. 53, 42. (2008).   DOI
5 J. L. Pruneda-Paz, G. Breton, A. Para, and S. A. Kay, Science 323, 1481. (2009).   DOI
6 I. L. Viola, N. G. Uberti Manassero, R. Ripoll, and D. H. Gonzalez, Biochem. J. 435, 143. (2011).   DOI   ScienceOn
7 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277. (1995).
8 T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA. (2003).
9 J.-H. Lee and A. Pardi, Nucleic Acids Res. 35, 2965. (2007).   DOI
10 P. Cubas, N. Lauter, J. Doebley, and E. Coen, Plant J. 18, 215. (1999).   DOI
11 Y.-G. Choi, H.-E. Kim, J.-H. Lee, J. Korean Magn. Reson. Soc. 17, 76. (2013).   DOI   ScienceOn