• 제목/요약/키워드: the pores

검색결과 2,104건 처리시간 0.029초

텅스텐 다공체의 기공특성에 미치는 분말특성 및 동결조건의 영향 (Effect of Powder Characteristic and Freeze Condition on the Pore Characteristics of Porous W)

  • 권나연;오승탁
    • 한국분말재료학회지
    • /
    • 제19권4호
    • /
    • pp.259-263
    • /
    • 2012
  • Dependence of the freeze-drying process condition on microstructure of porous W and pore formation mechanism were studied. Camphene slurries with $WO_3$ contents of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of dispersant. Freezing of a slurry was done in Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min, and sintered in the furnace at $900^{\circ}C$ for 1 h. After heat treatment in hydrogen atmosphere, $WO_3$ powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about $70{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores with dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry.

CuO가 코팅된 Cu 분말을 혼합한 Camphene 슬러리의 동결건조에 의한 Cu 다공체 제조 (Fabrication of Porous Cu by Freeze-drying Process of Camphene Slurry with CuO-coated Cu Powders)

  • 방수룡;오승탁
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.191-195
    • /
    • 2014
  • This study reports a simple way of fabricating the porous Cu with unidirectional pore channels by freeze drying camphene slurry with Cu oxide coated Cu powders. The coated powders were prepared by calcination of ball-milled powder mixture of Cu and Cu-nitrate. Improved dispersion stability of camphene slurry could be achieved using the Cu oxide coated Cu powders instead of pure Cu powders. Pores in the frozen specimen at $-25^{\circ}C$ were generated by sublimation of the camphene during drying in air, and the green bodies were sintered at $750^{\circ}C$ for 1 h in $H_2$ atmosphere. XRD analysis revealed that the coated layer of Cu oxide was completely converted to Cu phase without any reaction phases by hydrogen heat treatment. The porous Cu specimen prepared from pure Cu powders showed partly large pores with unidirectional pore channels, but most of pores were randomly distributed. In contrast, large and aligned parallel pores to the camphene growth direction were clearly observed in the sample using Cu oxide coated Cu powders. Pore formation behavior depending on the initial powders was discussed based on the degree of powder rearrangement and dispersion stability in slurry.

유리연마슬러지를 사용한 다공성 소재의 미세구조 및 물리적 특성에 관한 연구 (Microstructure and Physical Properties of Porous Material Fabricated from a Glass Abrasive Sludge)

  • 추용식;권춘우;이종규;심광보
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.277-283
    • /
    • 2006
  • A porous material with a surface layer was fabricated from glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20 min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and closed pores controlled water absorption. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The porous materials with $Fe_2O_3$ and graphite as the expanding agents had a low absorption ratio of about 3% or lower while the porous material with $CaCO_3$ as the expanding agent had a higher absorption ratio and more open pores.

플라즈마 스프레이 (Ca, Co)-Doped LaCrO3 코팅층의 치밀화 및 전기전도도 (Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating)

  • 박희진;백경호
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.155-160
    • /
    • 2017
  • Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF

함침재의 점도에 따른 벌크흑연의 기공 채움 효과 (The Pore-filling Effect of Bulk Graphite According to Viscosity of Impregnant)

  • 이상민;이상혜;노재승
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.101-107
    • /
    • 2021
  • Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.

CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향 (Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn)

  • 김주형;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.49-53
    • /
    • 2016
  • The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

WO3-TiH2 혼합분말의 동결건조 및 수소환원에 의한 W-Ti 다공체 제조 (Fabrication of Porous W-Ti by Freeze-Drying and Hydrogen Reduction of WO3-TiH2 Powder Mixtures)

  • 강현지;박성현;오승탁
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.472-476
    • /
    • 2017
  • Porous W-10 wt% Ti alloys are prepared by freeze-drying a $WO_3-TiH_2$/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the $WO_3$ peak of the starting powder and reaction-phase peaks such as $WO_{2.9}$, $WO_2$, and $TiO_2$ peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of $WO_3$ and the dehydrogenation reaction of $TiH_2$. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at $1000^{\circ}C$ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.

Cu 입자가 분산된 Al2O3 다공체의 제조 및 항균특성 (Synthesis and Antifungal Property of Porous Al2O3 with Dispersions of Cu Nanoparticles)

  • 유호석;김민성;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.16-20
    • /
    • 2014
  • In order to fabricate the porous $Al_2O_3$ with dispersion of nano-sized Cu particles, freeze-drying of camphene/$Al_2O_3$ slurry and solution chemistry process using Cu-nitrate are introduced. Camphene slurries with 10 vol% $Al_2O_3$ was frozen at $-25^{\circ}C$. Pores were generated by sublimation of the camphene during drying in air. The sintered samples at 1400 and $1500^{\circ}C$ showed the same size of large pores which were aligned parallel to the sublimable vehicles growth direction. However, the size of fine pores in the internal walls of large pores decreased with increase in sintering temperature. It was shown that Cu particles with the size of 100 nm were homogeneously dispersed on the surfaces of the large pores. Antibacterial test using fungus revealed that the porous $Al_2O_3$/1 vol% Cu composite showed antifungal property due to the dispersion of Cu particles. The results are suggested that the porous composites with required pore characteristics and functional property can be fabricated by freeze-drying process and addition of functional nano particles by chemical method.

Camphene/WO3-NiO 슬러리의 동결건조 및 수소분위기 열처리에 의한 W-Ni 다공체 제조 (Porous W-Ni Alloys Synthesized from Camphene/WO3-NiO Slurry by Freeze Drying and Heat Treatment in Hydrogen Atmosphere)

  • 박성현;박성민;박소정;박보영;오승탁
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.108-112
    • /
    • 2018
  • The present study demonstrates the effect of raw powder on the pore structure of porous W-Ni prepared by freeze drying of camphene-based slurries and sintering process. The reduction behavior of $WO_3$ and $WO_3-NiO$ powders is analyzed by a temperature programmed reduction method in Ar-10% H2 atmosphere. After heat treatment in hydrogen atmosphere, $WO_3-NiO$ powder mixture is completely converted to metallic W without any reaction phases. Camphene slurries with oxide powders are frozen at $-30^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene during drying in air. The green bodies are hydrogen-reduced at $800^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. The sintered samples show large and aligned parallel pores to the camphene growth direction, and small pores in the internal wall of large pores. The strut between large pores, prepared from pure $WO_3$ powder, consists of very fine particles with partially necking between the particles. In contrast, the strut densification is clearly observed in the Ni-added W sample due to the enhanced mass transport in activation sintering.