Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.6.472

Fabrication of Porous W-Ti by Freeze-Drying and Hydrogen Reduction of WO3-TiH2 Powder Mixtures  

Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Sung Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.6, 2017 , pp. 472-476 More about this Journal
Abstract
Porous W-10 wt% Ti alloys are prepared by freeze-drying a $WO_3-TiH_2$/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the $WO_3$ peak of the starting powder and reaction-phase peaks such as $WO_{2.9}$, $WO_2$, and $TiO_2$ peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of $WO_3$ and the dehydrogenation reaction of $TiH_2$. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at $1000^{\circ}C$ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.
Keywords
Porous W-Ti alloy; $WO_3-TiH_2$ powder mixture; Freeze drying; Hydrogen reduction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059.   DOI
2 D. T. Queheillalt, D. J. Sypeck and H. N. G. Wadley: Mater. Sci. Eng. A, 323 (2002) 138.   DOI
3 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
4 M. Bram, C. Stiller, H. P. Buchkremer, D. Stover and H. Baur: Adv. Eng. Mater., 2 (2000) 196.   DOI
5 D. C. Dunand: Adv. Eng. Mater., 6 (2004) 369.   DOI
6 K. C. Jeon, Y. D. Kim, M. J. Suk and S. T. Oh: Arch. Metall. Mater., 60 (2015) 1375.   DOI
7 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
8 A. I. C. Ramos and D. C. Dunand: Metals, 2 (2012) 265.   DOI
9 L. J. Kecskes and I. W. Hall: J. Mater. Process. Technol., 94 (1999) 247.   DOI
10 W. Qingxiang, L. Shuhua, F. Zhikang and C. Xin: Int. J. Refract. Met. Hard Mater., 28 (2010) 576.   DOI
11 H. E. Lee, Y. S. Kim and S. T. Oh: J. Korean Powder Metall. Inst., 24 (2017) 41.   DOI
12 T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse: Metall. Trans., 7B (1976) 589 .
13 K. G. Prashanth: Mater. Manuf. Process., 25 (2010) 974.   DOI
14 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI
15 K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
16 N. Y. Kwon and S. T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 259.   DOI