Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.1.49

Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn  

Kim, Joo-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hyun, Chang-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.1, 2016 , pp. 49-53 More about this Journal
Abstract
The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.
Keywords
Porous Cu-Sn; $CuO-SnO_2$ powder mixture; Freeze-drying; Hydrogen reduction; Pore structure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091.   DOI
2 M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
3 P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059.   DOI
4 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
5 D. H. Yang, B. Y. Hur and S. R. Yang: J. Alloys Comp., 461 (2008) 221.   DOI
6 S.-H. Kim, Y.-W. Kim, J.-Y. Yun and H.-D. Kim: J. Korean Ceram. Soc., 41 (2004) 541 (Korean).   DOI
7 Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961.   DOI
8 S. Deville: Adv. Eng. Mater., 10 (2008) 155.   DOI
9 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
10 B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753.   DOI
11 S.-R. Bang and S.-T. Oh: J. Korean Powder Metall. Inst., 21 (2014) 191 (Korean).   DOI
12 K. C. Jeon, B. S. Kim, Y. D. Kim, M.-J. Suk and S.-T. Oh: Int. J. Refract. Met. Hard Mater., 53 (2015) 32.   DOI
13 M.-S. Kim, H.-S. Yoo, S.-T. Oh and C.-Y. Hyun: Kor. J. Mater. Res., 23 (2013) 722 (Korean).   DOI
14 O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre:Talanta, 50 (1999) 445.   DOI
15 B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537.   DOI
16 K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
17 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI