Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.3.155

Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating  

Park, Hee-Jin (Department of Materials Science and Engineering, Chungnam National University)
Baik, Kyeong-Ho (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.27, no.3, 2017 , pp. 155-160 More about this Journal
Abstract
Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.
Keywords
$LaCrO_3$ interconnect; plasma spraying; microstructural defects; gas tightness; electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Z. Zhu and S. C. Deevi, Mater. Sci. Eng. A, 348, 227 (2003).   DOI
2 J. W. Fergus, Solid State Ionics, 171, 1 (2004).   DOI
3 T. Horita, in Perovskite Oxide for Solid Oxide Fuel Cells Springer, ed. T. Ishihara (Springer Science & Business Media, USA, 2009) p. 285.
4 S. P. Jiang, L. Liu, K. P. Ong, P. Wu, J. Li and J. Pu, J. Power Sources, 176, 82 (2008).   DOI
5 S. H. Pi, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, D. R. Shin and C. O. Park, Int. J. Hydrogen Energy, 36, 13735 (2011).   DOI
6 S. P. Simner, J. S. Hardy and J. W. Stevenson, J. Electrochem. Soc., 148, A351 (2001).   DOI
7 S. Wang, M. Liu, Y. Dong, K. Xie, X. Liu and G. Meng, Mater. Res. Bull., 43, 2607 (2008).   DOI
8 S. Ghosh, A. D. Sharma, R. N. Basu and H. S. Maiti. J. Am. Ceram. Soc., 90, 3741 (2007).
9 X. L. Zhou, J. J. Ma, F. J. Deng, G. Y. Meng and X. Q. Liu. Solid State Ionics. 177, 3461 (2007).   DOI
10 K. Okumura, Y. Aihara, S. Ito and S. Kawasaki, J. Therm. Spray Technol., 9, 354 (2000).   DOI
11 C. H. Park and K. H. Baik, Met. Mater. Int., 20, 63 (2014).   DOI
12 L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p.28-50, John Wiley & Sons, New York, USA (1995).
13 K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52, 199 (2004).   DOI
14 P. Fauchais, J. Phys. D Appl. Phys., 37, R86 (2004).   DOI
15 C. Li, C. Li and M. Wang, Surf. Coat. Technol., 198, 278 (2005).   DOI
16 S. Ghosh, A. D. Sharma, R. N. Basu and H. S. Maiti, Electrochem. Solid State Lett., 9, A516 (2006).   DOI
17 K. J. Yoon, J. W. Stevenson and O. A. Marina, J. Power Sources, 196, 8531 (2011).   DOI
18 R. H. Henne, T. Franco and R. Ruckdaschel. J. Therm. Spray Technol., 15, 695 (2006).   DOI