DOI QR코드

DOI QR Code

Fabrication of Porous W-Ti by Freeze-Drying and Hydrogen Reduction of WO3-TiH2 Powder Mixtures

WO3-TiH2 혼합분말의 동결건조 및 수소환원에 의한 W-Ti 다공체 제조

  • Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Sung Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 박성현 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2017.11.15
  • Accepted : 2017.11.28
  • Published : 2017.12.28

Abstract

Porous W-10 wt% Ti alloys are prepared by freeze-drying a $WO_3-TiH_2$/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the $WO_3$ peak of the starting powder and reaction-phase peaks such as $WO_{2.9}$, $WO_2$, and $TiO_2$ peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of $WO_3$ and the dehydrogenation reaction of $TiH_2$. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at $1000^{\circ}C$ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.

Keywords

References

  1. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  2. D. T. Queheillalt, D. J. Sypeck and H. N. G. Wadley: Mater. Sci. Eng. A, 323 (2002) 138. https://doi.org/10.1016/S0921-5093(01)01357-0
  3. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  4. M. Bram, C. Stiller, H. P. Buchkremer, D. Stover and H. Baur: Adv. Eng. Mater., 2 (2000) 196. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<196::AID-ADEM196>3.0.CO;2-K
  5. D. C. Dunand: Adv. Eng. Mater., 6 (2004) 369. https://doi.org/10.1002/adem.200405576
  6. K. C. Jeon, Y. D. Kim, M. J. Suk and S. T. Oh: Arch. Metall. Mater., 60 (2015) 1375. https://doi.org/10.1515/amm-2015-0134
  7. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  8. N. Y. Kwon and S. T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 259. https://doi.org/10.4150/KPMI.2012.19.4.259
  9. A. I. C. Ramos and D. C. Dunand: Metals, 2 (2012) 265. https://doi.org/10.3390/met2030265
  10. L. J. Kecskes and I. W. Hall: J. Mater. Process. Technol., 94 (1999) 247. https://doi.org/10.1016/S0924-0136(99)00077-1
  11. W. Qingxiang, L. Shuhua, F. Zhikang and C. Xin: Int. J. Refract. Met. Hard Mater., 28 (2010) 576. https://doi.org/10.1016/j.ijrmhm.2010.04.004
  12. H. E. Lee, Y. S. Kim and S. T. Oh: J. Korean Powder Metall. Inst., 24 (2017) 41. https://doi.org/10.4150/KPMI.2017.24.1.41
  13. T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse: Metall. Trans., 7B (1976) 589 .
  14. K. G. Prashanth: Mater. Manuf. Process., 25 (2010) 974. https://doi.org/10.1080/10426911003720870
  15. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  16. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.