• 제목/요약/키워드: the exponent of convergence of zeros

검색결과 5건 처리시간 0.017초

ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Wu, Zhaojun;Sun, Daochun
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1329-1338
    • /
    • 2007
  • In this paper, we study the location of zeros and Borel direction for the solutions of linear homogeneous differential equations $$f^{(n)}+A_{n-1}(z)f^{(n-1)}+{\cdots}+A_1(z)f#+A_0(z)f=0$$ with entire coefficients. Results are obtained concerning the rays near which the exponent of convergence of zeros of the solutions attains its Borel direction. This paper extends previous results due to S. J. Wu and other authors.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Qi, Xiaoguang;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.597-607
    • /
    • 2019
  • In this article, we consider properties of transcendental meromorphic solutions of the complex differential-difference equation $$P_n(z)f^{(n)}(2+{\eta}_n)+{\cdots}+P_1(z)f^{\prime}(z+{\eta}_1)+P_0(z)f(z+{\eta}_0)=0$$, and its non-homogeneous equation. Our results extend earlier results by Liu et al. [9].

On the Order of Growth of Solutions to Complex Non-homogeneous Linear Differential Equations

  • Habib, Habib;Belaidi, Benharrat
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.819-829
    • /
    • 2016
  • In this paper, we study the order of growth of solutions to the non-homogeneous linear differential equation $$f^{(k)}+A_{k-1}e^{az}f^{(k-1)}+{\cdots}+A_1e^{az}f^{\prime}+A_0e^{az}f=F_1e^{az}+F_2e^{bz}$$, where $A_j(z)$ (${\not\equiv}0$) ($j=0,1,{\cdots},k-1$), $F_j(z)$ (${\not\equiv}0$) (j = 1, 2) are entire functions and a, b are complex numbers such that $ab(a-b){\neq}0$.