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Abstract. In this paper, we study the order of growth of solutions to the non-
homogeneous linear differential equation

f (k) +Ak−1e
azf (k−1) + · · ·+A1e

azf ′ +A0e
azf = F1e

az + F2e
bz,

where Aj (z) ( 6≡ 0) (j = 0, 1, · · · , k − 1), Fj (z) ( 6≡ 0) (j = 1, 2) are entire functions and a,

b are complex numbers such that ab (a− b) 6= 0.

1. Introduction and Statement of Results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna value distribution theory of
meromorphic functions [6, 12]. In what follows, we give the necessary notations and
basic definitions.

Definition 1.1([6, 12]). Let f be a meromorphic function. Then the order σ (f)
of f (z) is defined by

σ (f) = lim sup
r→+∞

log T (r, f)

log r
,
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where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire
function, then the order σ (f) of f (z) is defined by

σ (f) = lim sup
r→+∞

log T (r, f)

log r
= lim sup

r→+∞

log logM (r, f)

log r
,

where M (r, f) = max|z|=r |f (z)|.

Definition 1.2([6, 12]). Let f be a meromorphic function. Then the exponent of
convergence of the sequence of zeros of f (z) is defined by

λ (f) = lim sup
r→+∞

logN
(
r, 1f

)
log r

,

where N
(
r, 1f

)
is the integrated counting function of zeros of f (z) in {z : |z| ≤ r}.

Similarly, the exponent of convergence of the sequence of distinct zeros of f (z) is
defined by

λ (f) = lim sup
r→+∞

logN
(
r, 1f

)
log r

,

where N
(
r, 1f

)
is the integrated counting function of distinct zeros of f (z) in

{z : |z| ≤ r}.

In [10], Wang and Laine investigated the growth of solutions of some second
order nonhomogeneous linear differential equation and obtained.

Theorem A([10]). Let Aj (z) (6≡ 0) (j = 0, 1) and F (z) be entire functions with
max{σ (Aj) (j = 0, 1) , σ (F )} < 1, and let a, b be complex constants that satisfy
ab 6= 0 and a 6= b. Then every nontrivial solution f of the differential equation

f ′′ +A1 (z) eazf ′ +A0 (z) ebzf = F,

is of infinite order.

In this paper, we offer a higher-order result related to Theorem A. In fact we
will prove the following results.

Theorem 1.1. Let Aj (z) ( 6≡ 0) (j = 0, 1, · · · , k − 1), Fj (z) (6≡ 0) (j = 1, 2) be
entire functions with σ (Aj) < 1 (j = 0, 1, · · · , k − 1) and σ (Fj) < 1 (j = 1, 2),
a and b be non-zero complex numbers such that b = ca (0 < c < 1). Suppose the
following:

(1) there is exactly one s (0 ≤ s ≤ k − 1) such that

σ (As) > max {σ (Aj) : j = 0, 1, · · · , k − 1 and j 6= s} ,
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(2) for any τ satisfying 0 < τ < σ (As), there exists a subset H ⊂ (1,+∞) with
infinite logarithmic measure, such that when |z| = r ∈ H,

log |As (z)| > rτ .

Then every solution f of the differential equation

(1.1) f (k)+Ak−1e
azf (k−1)+· · ·+Aseazf (s)+· · ·+A1e

azf ′+A0e
azf = F1e

az+F2e
bz

has infinite order.

Corollary 1.1. Let Aj (z) ( 6≡ 0) (j = 0, 1, · · · , k − 1), Fj (z) (6≡ 0) (j = 1, 2) be
entire functions with σ (Aj) <

1
2 (j = 0, 1, · · · , k − 1) and σ (Fj) < 1 (j = 1, 2), a

and b be non-zero complex numbers such that b = ca (0 < c < 1). Suppose that there
is exactly one s (0 ≤ s ≤ k − 1) such that

σ (As) > max {σ (Aj) : j = 0, 1, · · · , k − 1 and j 6= s} .

Then every solution f of the differential equation (1.1) has infinite order.

Remark 1.1. By the hypothesis of Corollary 1.1, we see that 0 < σ (As) <
1
2 .

Theorem 1.2. Under the hypotheses of Theorem 1.1, suppose further that ϕ (z) 6≡ 0
is an entire function with finite order. Then every solution f of (1.1) satisfies

λ (f − ϕ) = λ (f − ϕ) = σ(f) = +∞.

2. Preliminary Lemmas

Lemma 2.1([4, 9]). Let P1, P2, · · · , Pn (n ≥ 1) be non-constant polynomials
with degree d1, d2, · · · , dn, respectively, such that deg (Pi − Pj) = max {di, dj} for

i 6= j. Let A (z) =
n∑
j=1

Bj (z) ePj(z) where Bj (z) (6≡ 0) are entire functions with

σ (Bj) < dj. Then σ (A) = max
1≤j≤n

{dj}.

Lemma 2.2([8]). Suppose that P (z) = (α+ iβ) zn + · · · ( α, β are real numbers,
|α|+|β| 6= 0) is a polynomial with degree n ≥ 1, that A (z) (6≡ 0) is an entire function
with σ (A) < n. Set g (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cosnθ − β sinnθ.
Then for any given ε > 0, there is a set E1 ⊂ [0, 2π) that has linear measure zero,
such that for any θ ∈ [0, 2π)� (E1 ∪ E2), there is R > 0, such that for |z| = r > R,
we have

(i) if δ (P, θ) > 0, then

exp {(1− ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} ,
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(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} ≤
∣∣g (reiθ)∣∣ ≤ exp {(1− ε) δ (P, θ) rn} ,

where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 2.3([5]). Let f be a transcendental meromorphic function of finite order
σ. Let ε > 0 be a constant, k and j be integers satisfying k > j ≥ 0. Then the
following two statements hold:

(i) There exists a set E3 ⊂ (1,+∞) which has finite logarithmic measure, such
that for all z satisfying |z| /∈ E3 ∪ [0, 1], we have

(2.1)

∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε) .
(ii) There exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that if

θ ∈ [0, 2π)�E4, then there is a constant R = R (θ) > 0 such that (2.1) holds
for all z satisfying arg z = θ and |z| ≥ R.

Lemma 2.4([11]). Let f (z) be an entire function and suppose that

G (z) :=
log+

∣∣f (k) (z)
∣∣

|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an
infinite sequence of points zn = rne

iθ (n = 1, 2, · · · ), where rn → +∞, such that
G (zn)→∞ and ∣∣∣∣ f (j) (zn)

f (k) (zn)

∣∣∣∣ ≤ 1

(k − j)!
(1 + o (1)) rk−jn , j < k

as n→ +∞.

Lemma 2.5([11]). Let f (z) be an entire function with σ (f) = σ < +∞. Sup-
pose that there exists a set E5 ⊂ [0, 2π) which has linear measure zero, such that
log+

∣∣f (reiθ)∣∣ ≤ Mrρ for any ray arg z = θ ∈ [0, 2π)�E5, where M is a positive
constant depending on θ, while ρ is a positive constant independent of θ. Then
σ (f) ≤ ρ.

Lemma 2.6([3]). Let Aj ( j = 0, 1, · · · , k− 1), F 6≡ 0 be finite order meromorphic
functions. If f (z) is an infinite order meromorphic solution of the differential
equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then f satisfies
λ (f) = λ (f) = σ(f) = +∞.
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Remark 2.1([1, 2]). Let h (z) be a transcendental entire function with order
σ (h) = σ < 1

2 . Then there exists a subset H ⊂ (1,+∞) having infinite logarithmic
measure, such that if σ = 0, then

min {log |h (z)| : |z| = r}
log r

→ +∞ (|z| = r ∈ H, r → +∞) ,

if σ > 0, then for any α (0 < α < σ),

log |h (z)| > rα (|z| = r ∈ H, r → +∞) .

3. Proof of the Theorems and Corollary

Proof of Theorem 1.1. We know that b = ca (0 < c < 1), then by (1.1) we get

(3.1) e−azf (k) +Ak−1f
(k−1) + · · ·+Asf

(s) + · · ·+A1f
′ +A0f = F1 + F2e

(c−1)az.

First, we prove that every solution f of (1.1) satisfies σ (f) ≥ 1. We assume that
σ (f) < 1. Obviously σ

(
Ajf

(j)
)
< 1 (j = 0, 1, · · · , k − 1). Rewrite (3.1) as

(3.2) F2e
(c−1)az − f (k)e−az = Ak−1f

(k−1) + · · ·+Asf
(s) + · · ·+A1f

′ +A0f − F1.

By (3.2) and the Lemma 2.1, we have

1 = σ
{
F2e

(c−1)az − f (k)e−az
}

= σ
{
Ak−1f

(k−1) + · · ·+Asf
(s) + · · ·+A1f

′ +A0f − F1

}
< 1.

This is a contradiction. Hence, σ (f) ≥ 1. Therefore f is a transcendental solution
of equation (1.1).

Now, we prove that σ (f) = +∞. Suppose that σ (f) = σ < +∞. Set

α = σ (As) ,

β = max {σ (Aj) : j = 0, 1, · · · , k − 1 and j 6= s} ,
γ = max {σ (Fj) : j = 1, 2} .

It is clear that, 0 ≤ β < α < 1 and 0 ≤ γ < 1. Then for any given ε with
0 < ε < min {1− α, 1− β, 1− γ} and for sufficiently large r, we have

(3.3) |As (z)| ≤ exp
{
rα+ε

}
,

(3.4) |Aj (z)| ≤ exp
{
rβ+ε

}
, (j = 0, 1, · · · , k − 1 and j 6= s) ,
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(3.5) |Fj (z)| ≤ exp
{
rγ+ε

}
, (j = 1, 2) .

By Lemma 2.2, there exists a set E ⊂ [0, 2π) of linear measure zero, such that
whenever θ ∈ [0, 2π)�E, then δ (az, θ) 6= 0. By Lemma 2.3, there exists a set
E4 ⊂ [0, 2π) which has linear measure zero, such that if θ ∈ [0, 2π)�E4, then there
is a constant R = R (θ) > 1 such that for all z satisfying arg z = θ and |z| ≥ R, we
have

(3.6)

∣∣∣∣f (j) (z)

f (i) (z)

∣∣∣∣ ≤ |z|kσ , 0 ≤ i < j ≤ k.

By the hypothesis of Theorem 1.1, we see that there exists a subset H ⊂ (1,+∞)
having infinite logarithmic measure and τ > 0 such that 0 ≤ β < τ < σ (As),

(3.7) |As (z)| > exp {rτ} , |z| = r ∈ H.

For any fixed θ ∈ [0, 2π)� (E ∪ E4), set

δ1 = δ (−az, θ) , δ2 = δ ((c− 1) az, θ) .

We can obtain

δ2 = (c− 1) δ (az, θ) = (1− c) δ (−az, θ) = (1− c) δ1,

then δ1 6= 0, δ2 6= 0. We now discuss two cases separately.

Case 1. Suppose that δ1 > 0, then δ2 > 0. We can get

0 < δ2 = (1− c) δ1 < δ1.

By Lemma 2.2, for any given ε with 0 < 2ε < min
{
δ1−δ2
δ1

, 1− α, 1− β, 1− γ
}

, we

obtain

(3.8)
∣∣e−az∣∣ ≥ exp {(1− ε) δ1r} ,

(3.9)
∣∣∣e(c−1)az∣∣∣ ≤ exp {(1 + ε) δ2r}

for sufficiently large r. We now prove that log+
∣∣f (k) (z)

∣∣ / |z|γ+ε is bounded on

the ray arg z = θ. We assume that log+
∣∣f (k) (z)

∣∣ / |z|γ+ε is unbounded on the ray
arg z = θ. Then by Lemma 2.4, there is a sequence of points zm = rme

iθ, such that
rm → +∞, and that

(3.10)
log+

∣∣f (k) (zm)
∣∣

rγ+εm

→ +∞,

(3.11)

∣∣∣∣ f (j) (zm)

f (k) (zm)

∣∣∣∣ ≤ 1

(k − j)!
(1 + o (1)) rk−jm ≤ 2rk−jm , (j = 0, 1, · · · , k − 1) ,
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for m is large enough. From (3.5) and (3.10), we get

(3.12)

∣∣∣∣ Fj (zm)

f (k) (zm)

∣∣∣∣→ 0, (j = 1, 2) ,

for m is large enough. From (3.1), we obtain

∣∣e−az∣∣ ≤ |Ak−1| ∣∣∣∣f (k−1)f (k)

∣∣∣∣+ · · ·+ |As|
∣∣∣∣ f (s)f (k)

∣∣∣∣+ · · ·+ |A1|
∣∣∣∣ f ′f (k)

∣∣∣∣
(3.13) + |A0|

∣∣∣∣ ff (k)
∣∣∣∣+

∣∣∣∣ F1

f (k)

∣∣∣∣+

∣∣∣∣ F2

f (k)

∣∣∣∣ ∣∣∣e(c−1)az∣∣∣ .
Substituting (3.3), (3.4), (3.8), (3.9), (3.11) and (3.12) into (3.13), we have

exp {(1− ε) δ1rm} ≤
∣∣e−azm∣∣

≤ |Ak−1 (zm)|
∣∣∣∣f (k−1) (zm)

f (k) (zm)

∣∣∣∣+ · · ·+ |As (zm)|
∣∣∣∣ f (s) (zm)

f (k) (zm)

∣∣∣∣
+ · · ·+ |A0 (zm)|

∣∣∣∣ f (zm)

f (k) (zm)

∣∣∣∣+

∣∣∣∣ F1 (zm)

f (k) (zm)

∣∣∣∣+

∣∣∣∣ F2 (zm)

f (k) (zm)

∣∣∣∣ ∣∣∣e(c−1)azm ∣∣∣
(3.14) ≤M0r

M1
m exp

{
rα+εm

}
exp {(1 + ε) δ2rm} ,

where M0 > 0 and M1 > 0 are some constants. By 0 < ε < δ1−δ2
2δ1

and (3.14), we
can get

exp

{
(δ1 − δ2)

2

2δ1
rm

}
≤M0r

M1
m exp

{
rα+εm

}
,

which is a contradiction because α + ε < 1. Therefore, log+
∣∣f (k) (z)

∣∣ / |z|γ+ε is
bounded and we have ∣∣∣f (k) (z)

∣∣∣ ≤M exp
{
rγ+ε

}
on the ray arg z = θ. By the same reasoning as in the proof of Lemma 3.1 in [7],
we immediately conclude that

|f (z)| ≤ (1 + o (1)) rk
∣∣∣f (k) (z)

∣∣∣ ≤ (1 + o (1))Mrk exp
{
rγ+ε

}
≤M exp

{
rγ+2ε

}
on the ray arg z = θ.

Case 2. Suppose that δ1 < 0, then δ2 < 0. By Lemma 2.2, for any given ε with
0 < 2ε < min {1− α, 1− β, 1− γ, τ − β}, we obtain

(3.15)
∣∣e−az∣∣ ≤ exp {(1− ε) δ1r} < 1,
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(3.16)
∣∣∣e(c−1)az∣∣∣ ≤ exp {(1− ε) δ2r} < 1,

for sufficiently large r. We now prove that log+
∣∣f (s) (z)

∣∣ / |z|γ+ε is bounded on

the ray arg z = θ. We assume that log+
∣∣f (s) (z)

∣∣ / |z|γ+ε is unbounded on the ray
arg z = θ. Then by Lemma 2.4, there is a sequence of points zm = rme

iθ, such that
rm → +∞, and that

(3.17)
log+

∣∣f (s) (zm)
∣∣

rγ+εm

→ +∞,

(3.18)

∣∣∣∣f (j) (zm)

f (s) (zm)

∣∣∣∣ ≤ 1

(s− j)!
(1 + o (1)) rs−jm ≤ 2rs−jm , (j = 0, 1, · · · , s− 1) ,

for m is large enough. From (3.5) and (3.17), we get

(3.19)

∣∣∣∣ Fj (zm)

f (s) (zm)

∣∣∣∣→ 0, (j = 1, 2)

for m is large enough. From (3.1), we obtain
(3.20)

−1 =
1

As
e−az

f (k)

f (s)
+

k−1∑
j=s+1

(
Aj
As

f (j)

f (s)

)
+

s−1∑
j=0

(
Aj
As

f (j)

f (s)

)
− 1

As

F1

f (s)
− 1

As

F2

f (s)
e(c−1)az.

By (3.7), we obtain

(3.21)

∣∣∣∣ 1

As (zm)

∣∣∣∣ < exp {−rτm} ,

(3.22)

∣∣∣∣Aj (zm)

As (zm)

∣∣∣∣ < exp
{
rβ+εm − rτm

}
, (j = 0, 1, · · · , k − 1 and j 6= s) ,

for m is large enough. Substituting (3.6), (3.15), (3.16), (3.18), (3.19), (3.21) and
(3.22) into (3.20), we have

1 ≤
∣∣∣∣ 1

As (zm)

∣∣∣∣ ∣∣e−azm ∣∣ ∣∣∣∣f (k) (zm)

f (s) (zm)

∣∣∣∣
+

k−1∑
j=s+1

(∣∣∣∣Aj (zm)

As (zm)

∣∣∣∣ ∣∣∣∣f (j) (zm)

f (s) (zm)

∣∣∣∣)+

s−1∑
j=0

(∣∣∣∣Aj (zm)

As (zm)

∣∣∣∣ ∣∣∣∣f (j) (zm)

f (s) (zm)

∣∣∣∣)

+

∣∣∣∣ 1

As (zm)

∣∣∣∣ ∣∣∣∣ F1 (zm)

f (s) (zm)

∣∣∣∣+

∣∣∣∣ 1

As (zm)

∣∣∣∣ ∣∣∣∣ F2 (zm)

f (s) (zm)

∣∣∣∣ ∣∣∣e(c−1)azm ∣∣∣
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≤ rkσm exp {−rτm} exp {(1− ε) δ1rm}+ (k − s− 1) rkσm exp
{
rβ+εm − rτm

}
+2srsm exp

{
rβ+εm − rτm

}
+ o (1) exp {−rτm}

(3.23) +o (1) exp {−rτm} exp {(1− ε) δ2rm} .

Obviously,

(3.24) exp {−rτm} → 0,

(3.25) rkσm exp {−rτm} exp {(1− ε) δ1rm} → 0,

(3.26) exp {−rτm} exp {(1− ε) δ2rm} → 0,

(3.27) rkσm exp
{
rβ+εm − rτm

}
→ 0,

(3.28) rsm exp
{
rβ+εm − rτm

}
→ 0

as rm → +∞ because β+ε < τ . From (3.23)–(3.28), we obtain 1 ≤ 0 as rm → +∞,
which is a contradiction. Therefore, log+

∣∣f (s) (z)
∣∣ / |z|γ+ε is bounded and we have∣∣∣f (s) (z)

∣∣∣ ≤M exp
{
rγ+ε

}
on the ray arg z = θ. This implies, as in Case 1, that

(3.29) |f (z)| ≤M exp
{
rγ+2ε

}
.

Therefore, for any given θ ∈ [0, 2π)� (E ∪ E4), we have got (3.29) on the ray
arg z = θ, provided that r is large enough. Then by Lemma 2.5, we have σ (f) ≤
γ+ 2ε < 1, which is a contradiction. Hence every transcendental solution f of (1.1)
must be of infinite order. 2

Proof of Corollary 1.1. By the hypothesis of Corollary 1.1, we see that 0 < σ (As) <
1
2 . Using Remark 2.1 and using the same reasoning as above, we can get σ (f) =
+∞. 2

Proof of Theorem 1.2. Suppose that f is a solution of equation (1.1). Then, by
Theorem 1.1 we have σ (f) = +∞. Set g (z) = f (z) − ϕ (z), g (z) is an entire
function and σ (g) = σ (f) = +∞. Substituting f = g + ϕ into (1.1), we obtain

(3.30) g(k) +Ak−1e
azg(k−1) + · · ·+A1e

azg′ +A0e
azg = D,

where

D = F1e
az + F2e

bz −
[
ϕ(k) +Ak−1e

azϕ(k−1) + · · ·+A1e
azϕ′ +A0e

azϕ
]
.
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We prove that D 6≡ 0. In fact, if D ≡ 0, then

ϕ(k) +Ak−1e
azϕ(k−1) + · · ·+A1e

azϕ′ +A0e
azϕ = F1e

az + F2e
bz.

Hence σ (ϕ) = +∞, which is a contradiction. Therefore D 6≡ 0. We know that the
functions Aj (j = 0, 1, · · · , k − 1), D are of finite order. By Lemma 2.6 and (3.30)
we have

λ (g) = λ (g) = σ(g) = σ(f) = +∞.

Therefore
λ (f − ϕ) = λ (f − ϕ) = σ(f) = +∞,

which completes the proof. 2
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