• 제목/요약/키워드: the Lipschitz class

검색결과 58건 처리시간 0.022초

A NOTE ON EXPONENTIAL ALMOST SURE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATION

  • Mao, Xuerong;Song, Qingshuo;Yang, Dichuan
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.221-227
    • /
    • 2014
  • Our goal is to relax a sufficient condition for the exponential almost sure stability of a certain class of stochastic differential equations. Compared to the existing theory, we prove the almost sure stability, replacing Lipschitz continuity and linear growth conditions by the existence of a strong solution of the underlying stochastic differential equation. This result is extendable for the regime-switching system. An explicit example is provided for the illustration purpose.

CONVERGENCE AND STABILITY OF ITERATIVE ALGORITHM OF SYSTEM OF GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSION PROBLEMS USING (𝜃, 𝜑, 𝛾)-RELAXED COCOERCIVITY

  • Kim, Jong Kyu;Bhat, Mohd Iqbal;Shaf, Sumeera
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.749-780
    • /
    • 2021
  • In this paper, we give the notion of M(., .)-𝜂-proximal mapping for a nonconvex, proper, lower semicontinuous and subdifferentiable functional on Banach space and prove its existence and Lipschitz continuity. As an application, we introduce and investigate a new system of variational-like inclusions in Banach spaces. By means of M(., .)-𝜂-proximal mapping method, we give the existence of solution for the system of variational inclusions. Further, propose an iterative algorithm for finding the approximate solution of this class of variational inclusions. Furthermore, we discuss the convergence and stability analysis of the iterative algorithm. The results presented in this paper may be further expolited to solve some more important classes of problems in this direction.

On linear output feedback for uncertain nonlinear systems

  • Choi, Ho-Lim;Koo, Min-Sung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1604-1607
    • /
    • 2004
  • In this paper, we consider a problem of asymptotic output regulation of a class of uncertain nonlinear systems by output feedback. The system under consideration is in the Parametric-Pure-Feedback Form, which does not satisfy the existing conditions such as the triangularity condition or the Lipschitz condition. We propose a linear output feedback controller with a scaling factor, which asymptotically regulates the output of the considered system.

  • PDF

HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE

  • Dumitru Baleanu;Banupriya Kandasamy;Ramkumar Kasinathan;Ravikumar Kasinathan;Varshini Sandrasekaran
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.967-982
    • /
    • 2023
  • The goal of this study is to derive a class of random impulsive non-local fractional stochastic differential equations with finite delay that are of Caputo-type. Through certain constraints, the existence of the mild solution of the aforementioned system are acquired by Kransnoselskii's fixed point theorem. Furthermore through Ito isometry and Gronwall's inequality, the Hyers-Ulam stability of the reckoned system is evaluated using Lipschitz condition.

입출력선형화 상태변환을 이용한 비선형 시스템의 저차 관측기 설계 (Reduced-Order Observer Design for Nonlinear Systems Using Input Output Linearization Transformation)

  • 조남훈
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we present a reduced-order observer for a class of nonlinear systems based on the input output linearization. While the most results in the literature presented full-order nonlinear observer, we proposed a procedure for the design of reduced-order observer far nonlinear systems that are not necessarily observable. Assuming that there exists a global observer fer internal dynamics and that certain functions are globally Lipschitz, we can design a global reduced-order observer An illustrative example is included that demonstrate the design procedure of the proposed reduced-order observer.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

PERTURBED THREE-STEP ITERATIVE PROCESSES WITH ERRORS FOR GENERAL STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHAO YALI;XIA ZUNQUAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.171-183
    • /
    • 2005
  • In this paper, we introduce and study a class of general strongly nonlinear quasivariational inequalities in Hilbert spaces. We prove the existence and uniqueness of solution and convergence of the perturbed the three-step iterative sequences with errors for this kind of general strongly nonlinear quasivariational inquality problems involving relaxed Lipschitz, relaxed monotone, and strongly monotone mappings. Our results extend, improve, and unify many known results due to Liu-Ume-Kang, Kim-Kyung, Zeng and others.

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권2호
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF