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Abstract: In this paper, we consider a problem of asymptotic output regulation of a class of uncertain nonlinear systems by

output feedback. The system under consideration is in the Parametric-Pure-Feedback Form, which does not satisfy the existing

conditions such as the triangularity condition or the Lipschitz condition. We propose a linear output feedback controller with

a scaling factor, which asymptotically regulates the output of the considered system.
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1. Introduction
The problem of output feedback control of nonlinear systems

remains as an active research area. This is a challenging

problem mainly because the so-called separation principle

generally does not hold for nonlinear systems. Thus, for

convenience, one condition which is often assumed in several

works is the Lipschitz condition [1]-[2],[4]-[6],[8]. Under the

Lipschitz condition, the state estimate error dynamics can be

decoupled from the augmented closed-loop system dynamics.

Thus, it becomes easier to design an observer and an out-

put feedback controller. This Lipschitz condition is recently

relaxed in [7] where only the triangular-type linear growth

condition is assumed.

In this paper, the uncertain nonlinear system under consid-

eration is in the Parametric-Pure-Feedback Form [3]. This

form includes perturbed nonlinear terms which do not sat-

isfy the existing geometrical conditions such as the Lipschitz

condition which is mentioned above or the triangularity con-

dition [7],[10]. Thus, the problem of output feedback control

of nonlinear systems in the Parametric-Pure-Feedback Form

seems to be unsolved by the existing methods.

In our proposed method, there are two main steps: In the

first step, we define a new state transformation which trans-

forms the considered uncertain nonlinear system into the

nonlinear system with uncertainty under the input matching

condition. This idea is motivated by [9] where the two-step

transformation method is introduced for the treatment of

uncertainty. Then, in the second step, for the transformed

system we propose a linear output feedback control law with

a scaling factor for the asymptotic regulation of the output.

In the stability analysis of the closed-loop system, the selec-

tion of controller parameters is analytically shown.

2. Preliminaries
Consider the following single-input single-output nonlinear

system

ẋ = Ax + Bu + Φ(x, θ)

y = Cx (1)
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where x ∈ Rn is the state, u ∈ R and y ∈ R are the input and

the output of the system, respectively. The vector θ ∈ Dp ⊂
Rp consists of unknown constants. The system matrices are

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎦
C =

[
1 0 · · · 0 0

]
(2)

The nonlinear term is structured as

Φ(x, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x1, x2, θ)
...

φi(x1, · · · , xi+1, θ)
...

φn(x1, · · · , xn, θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where Φ(0, θ) = 0.

The system (1) with the nonlinear term in the form of (3) is

called the Parametric-Pure-Feedback Form in [3] where the

asymptotic stabilizing state feedback control law is devel-

oped. This form usually does not satisfy the triangularity

condition imposed in [7],[10] (i.e., |φi(x, θ)| ≤ c(|x1| + · · · +
|xi|), 1 ≤ i ≤ n). Thus, the methods in [7],[10] cannot be

directly applied to system (1). Our control objective is to

asymptotically regulate the output of the system (1) using

a linear output feedback controller. Throughout the paper,

the Euclidean 2-norm is used.

Remark 1: A large class of nonlinear systems can be rep-

resented in the form of (1) via a proper coordinate change.

The conditions for the existence of such a coordinate change

are addressed in [3],[5].

3. System Reformulation
We begin this section with the following assumption imposed

on the nonlinear term Φ(x, θ):

Assumption 1: The function φi(x1, · · · , xi+1, θ), 1 ≤ i ≤
n is n − i times continuously differentiable with respect to

its arguments.
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Under Assumption 1, it is obvious that φ̇i−1(x, θ) is a con-

tinuous function of (x1, · · · , xi+1, θ). With this property, we

first define

δ1(x1, x2, θ) := φ1(x1, x2, θ)

δi(x1, · · · , xi+1, θ) := φi(x1, · · · , xi+1, θ)

+δ̇i−1(x1, · · · , xi, θ)

δn(x1, · · · , xn, θ, u) := φn(x1, · · · , xn, θ)

+δ̇n−1(x1, · · · , xn, θ) (4)

where i = 2, · · · , n−1. Note that the input u appears in the

last function δn(x, θ, u).

Then, the state transformation z = Tθ(x) is defined as

z1 := x1

zi+1 := x2 + δi(x1, · · · , xi+1, θ) (5)

where i = 1, · · · , n − 1.

With z = Tθ(x), the system (1) is transformed into the fol-

lowing form:

ż = Az + Bu + Bδn(z, θ, u)

y = Cz (6)

where δn(z, θ, u) = δn(x, θ, u)|
x=T−1

θ
(z)

.

From Assumption 1 and the definition of z = Tθ(x), it is

obvious that for a given Dz, there exist constants γ ≥ 0 and

ρ ≥ 0 such that

‖δn(z, θ, u)‖ ≤ γ‖z‖ + ρ‖u‖, ∀z ∈ Dz (7)

This linear growth condition is more general than the Lip-

schitz condition as assumed in [1]-[2],[4]-[6],[8] because we

only require the continuity of the function. Obviously, the

eq. (7) does not satisfy the triangularity condition imposed

in [7],[10].

Also, from the definition of z = Tθ(x), we note that

lim
t→∞

‖z‖ = 0 guarantees that lim
t→∞

‖y‖ = 0 and ‖x‖ is

bounded for all t ≥ 0. Thus, our control goal now is to

asymptotically stabilize the system (6) by a linear output

feedback controller.

4. Linear Output Feedback Control Law
The proposed linear output feedback control law with a scal-

ing factor ε is

u = K(ε)ẑ (8)

˙̂z = Aẑ + Bu − L(ε)(y − Cẑ) (9)

where K(ε) = [ k1
εn , · · · , kn

ε
] and L(ε) = [ l1

ε
, · · · , ln

εn ]T , ε > 0.

Now, we state the main theorem.

Theorem 1: Suppose that K = [k1, · · · , kn] and L =

[l1, · · · , ln]T are selected such that each matrix AK := A +

BK and AL := A+LC is Hurwitz, respectively. Then, there

exist positive constants ρ∗ and ε∗ such that for 0 ≤ ρ < ρ∗

and 0 < ε < ε∗, the origin of the system (6) is asymptotically

stable by the output feedback control law (8)-(9).

Proof: Define ei = zi − ẑi, 1 ≤ i ≤ n. Subtracting the

observer dynamics (9) from the system (6), we have the state

estimate error dynamics as

ė = AL(ε)e + Bδn(z, θ, u) (10)

where AL(ε) := A + L(ε)C.

With the controller (8), we have the closed-loop system as

ż = AK(ε)z + Bδn(z, θ, u) − BK(ε)e (11)

where AK(ε) := A + BK(ε).

Now, we prove the theorem in three parts.

Part A: First, we define a matrix Eε := diag[1, ε, · · · , εn−1].

Since AK is Hurwitz, we have a Lyapunov equation AT
KPK +

PKAK = −I. Then, using the relation E−1
ε AKEε =

εAK(ε), we obtain a new Lyapunov equation AK(ε)T PK(ε)+

PK(ε)AK(ε) = −ε−1E2
ε where PK(ε) = EεPKEε. With this,

we set a Lyapunov function Vc(z) = zT PK(ε)z for (11).

Then, along the trajectory of (11),

V̇c(z) = −ε−1‖Eεz‖2

+2zT PK(ε)Bδn(z, θ, u) − 2zT PK(ε)BK(ε)e

= −ε−1‖Eεz‖2

+2zT EεPKEεBδn(z, θ, u) − 2zT EεPKEεBK(ε)e

≤ −ε−1‖Eεz‖2 + 2‖PK‖‖Eεz‖‖EεBδn(z, θ, u)‖
+2‖PK‖‖Eεz‖‖EεBK(ε)e‖ (12)

Here, we note that

‖EεBδn(z, θ, u)‖ ≤ εn−1‖δn(z, θ, u)‖
≤ εn−1γ‖z‖ + εn−1ρ‖u‖ (13)

Also, the controller (8) can be expressed as u = ε−nKEεẑ.

Thus, we have

‖u‖ ≤ ε−n‖K‖‖Eεz‖ + ε−n‖K‖‖Eεe‖ (14)

Using a property of ‖z‖ ≤ ε1−n‖Eεz‖, we obtain the follow-

ing inequality with a simple algebraic manipulation:

‖EεBδn(z, θ, u)‖ ≤ (γ + ε−1ρ‖K‖)‖Eεz‖ + ε−1ρ‖K‖‖Eεe‖(15)

Also, we note that EεBK(ε)e = ε−1BKEεe. Thus,

V̇c(z) ≤ −(ε−1 − σ1 − 2ρε−1σ2)‖Eεz‖2

+2ε−1(1 + ρ)σ2‖Eεz‖‖Eεe‖ (16)

where σ1 = 2γ‖PK‖ and σ2 = ‖PK‖‖K‖, which are ε-

independent constants.

Part B: The method is similar to Part A. Since AL is Hur-

witz, we have a Lyapunov equation AT
LPL + PLAL = −I.

Then, we have the following equalities: E−1
ε ALEε = εAL(ε),

AT
L(ε)PL(ε) + PL(ε)AL(ε) = −ε−1E2

ε , and PL(ε) = EεPLEε.

With this, we set a Lyapunov function Vo(e) = eT PL(ε)e for

(10). Then, along the trajectory of (10),

V̇o(e) = −ε−1‖Eεe‖2 + 2eT EεPLEεBδn(z, θ, u)

≤ −ε−1‖Eεe‖2

+2‖PL‖‖Eεe‖‖EεBδn(z, θ, u)‖ (17)
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Using (15), we have

V̇o(e) ≤ −ε−1(1 − 2ρσ4)‖Eεe‖2

+2(σ3 + ε−1ρσ4)‖Eεe‖‖Eεz‖ (18)

where σ3 = γ‖PL‖ and σ4 = ‖PL‖‖K‖, which are ε-

independent constants.

Part C: Now, for the augmented closed-loop system (10)-

(11), we set a composite Lyapunov function V (z, e) =

εVc(z)+ 1
σ3+ε−1ρσ4

Vo(e). Then, using (16) and (18), we have

V̇ (z, e) ≤ −ε(ε−1 − σ1 − 2ρε−1σ2)‖Eεz‖2

+2(1 + ρ)σ2‖Eεz‖‖Eεe‖

− ε−1(1 − 2ρσ4)

σ3 + ε−1ρσ4
‖Eεe‖2 + 2‖Eεe‖‖Eεz‖

= −
[

‖Eεe‖
‖Eεz‖

]T

M

[
‖Eεe‖
‖Eεz‖

]
(19)

where

M =

[
ε−1(1−2ρσ4)

σ3+ε−1ρσ4
−(1 + ρ)σ2 − 1

−(1 + ρ)σ2 − 1 ε(ε−1 − σ1 − 2ρε−1σ2)

]
The matrix M is positive definite if and only if 1− 2ρσ4 > 0

and det M(ε) > 0 where

det M(ε) =
(1 − 2ρσ4)(ε

−1 − σ1 − 2ρε−1σ2)

σ3 + ε−1ρσ4

− ((1 + ρ)σ2 + 1)2 (20)

From (20), the det M(ε) > 0 is satisfied for 0 < ε < ε∗ where

ε∗ :=
(1 − 2ρσ4)(1 − 2ρσ2) − ρσ4((1 + ρ)σ2 + 1)2

σ1(1 − 2ρσ4) + σ3((1 + ρ)σ2 + 1)2
(21)

Moreover, from (21), it is obvious that there always exists a

constant ρ̄ > 0 such that (1−2ρσ4)(1−2ρσ2)−ρσ4((1+ρ)σ2+

1)2 > 0 for 0 < ρ < ρ̄. Then, we take ρ∗ := min{1/2σ4, ρ̄}.
Thus, the origin of the system (6) with (8)-(9) is asymptot-

ically stable for 0 ≤ ρ < ρ∗ and 0 < ε < ε∗. �
Remark 2: The previous theorem has shown that the

asymptotic regulation is achieved for a sufficiently small

bound ρ in (7). However, it does not require γ to be small be-

cause for any finite γ, there always exists a constant ε∗ > 0.

5. Illustrative Example
Consider the following system

ẋ1 = x2 + 0.5 sin(0.01x2)

ẋ2 = u + θx
1/2
1

y = x1 (22)

where θ ∈ [0, 1]. Obviously, this system does not satisfy the

existing conditions [1]-[2],[4]-[8],[10]. Note that φ2(x, θ) =

θx
1/2
1 is not Lipschitz at the origin. The first step is to refor-

mulate the system as proposed. By following the proposed

method, we obtain

ż1 = z2

ż2 = u + δ2(z, θ, u)

y = z1 (23)

where z1 = x1, z2 = x2 + φ1(x, θ), and δ2(z, θ, u) =

θz
1/2
1 +0.005θz

1/2
1 cos(0.01x2)+0.005 cos(0.01x2)u. Thus, we

have the inequality such as ‖δ2(z, θ, u)‖ ≤ γ‖z‖+ρ‖u‖ where

γ = 1.005 and ρ = 0.005. Now, we select K = [−2.25,−3]

and L = [−4,−4]T such that each matrix AK and AL

is Hurwitz. With this selection, we obtain σ1 = 2.5139,

σ2 = 4.7135, σ3 = 1.1409, and σ4 = 4.2783. With a simple

algebraic manipulation, we obtain that ρ∗ = 0.0063, which

means that the output of the system (22) can be asymptoti-

cally regulated by the proposed method. With the obtained

information thus far, we compute ε∗ = 0.0212. We select

ε = 0.02. Thus, the design of the output feedback con-

troller is completed. The initial values are set as x1(0) = 1

and x2(0) = −1, which is equivalent to z1(0) = 1 and

z2(0) = −1.005. From Fig. 1, it is shown that the output is

asymptotically regulated and the other state z2 is also regu-

lated. From the definition of z2 = x2 + φ1(x, θ), in this case,

we also obtain the regulation of state x2.
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Fig. 1. State trajectories with (z1(0), z2(0)) = (1,−1.005)

and (ẑ1(0), ẑ2(0)) = (0, 0).

6. Conclusions
We have presented the new result on the asymptotic output

regulation of uncertain nonlinear systems in the Parametric-

Pure-Feedback Form by a linear output feedback control

scheme. With the new state transformation for system refor-

mulation and the utilization of a scaling factor ε, we have an-

alytically shown that the proposed method meets the control

goal for the considered uncertain nonlinear systems where

the existing methods are not applicable.
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