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Abstract: In this paper, we consider a problem of asymptotic output regulation of a class of uncertain nonlinear systems by

output feedback. The system under consideration is in the Parametric-Pure-Feedback Form, which does not satisfy the existing

conditions such as the triangularity condition or the Lipschitz condition. We propose a linear output feedback controller with

a scaling factor, which asymptotically regulates the output of the considered system.
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1. Introduction

The problem of output feedback control of nonlinear systems
remains as an active research area. This is a challenging
problem mainly because the so-called separation principle
Thus, for
convenience, one condition which is often assumed in several
works is the Lipschitz condition [1]-[2],[4]-[6],[8]. Under the

Lipschitz condition, the state estimate error dynamics can be

generally does not hold for nonlinear systems.

decoupled from the augmented closed-loop system dynamics.
Thus, it becomes easier to design an observer and an out-
put feedback controller. This Lipschitz condition is recently
relaxed in [7] where only the triangular-type linear growth
condition is assumed.

In this paper, the uncertain nonlinear system under consid-
eration is in the Parametric-Pure-Feedback Form [3]. This
form includes perturbed nonlinear terms which do not sat-
isfy the existing geometrical conditions such as the Lipschitz
condition which is mentioned above or the triangularity con-
dition [7],[10]. Thus, the problem of output feedback control
of nonlinear systems in the Parametric-Pure-Feedback Form
seems to be unsolved by the existing methods.

In our proposed method, there are two main steps: In the
first step, we define a new state transformation which trans-
forms the considered uncertain nonlinear system into the
nonlinear system with uncertainty under the input matching
condition. This idea is motivated by [9] where the two-step
transformation method is introduced for the treatment of
uncertainty. Then, in the second step, for the transformed
system we propose a linear output feedback control law with
a scaling factor for the asymptotic regulation of the output.
In the stability analysis of the closed-loop system, the selec-
tion of controller parameters is analytically shown.

2. Preliminaries

Consider the following single-input single-output nonlinear
system

Az + Bu + ®(z,0)
Cx

T

Y (1)
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where z € R" is the state, u € R and y € R are the input and
the output of the system, respectively. The vector 8 € D, C
RP consists of unknown constants. The system matrices are

0 1 0 0 0
0 1 0 0
A= C|oB=
0 0 O 1 0
0 0 O 0 1
c=[1 o0 0 0 ] @)
The nonlinear term is structured as
o1(z1,x2,0)
q)(xve) = d)i(ml?'“ ,l’i+1,0) (3)
an(xla"' 7337”9)

where ©(0,6) = 0.

The system (1) with the nonlinear term in the form of (3) is
called the Parametric-Pure-Feedback Form in [3] where the
asymptotic stabilizing state feedback control law is devel-
oped. This form usually does not satisfy the triangularity
condition imposed in [7],[10] (i.e., |pi(z, 8)| < c(Jz1] + -+ +
|zi]), 1 <4 < n). Thus, the methods in [7],[10] cannot be
directly applied to system (1). Our control objective is to
asymptotically regulate the output of the system (1) using
a linear output feedback controller. Throughout the paper,
the Euclidean 2-norm is used.

Remark 1: A large class of nonlinear systems can be rep-
resented in the form of (1) via a proper coordinate change.
The conditions for the existence of such a coordinate change
are addressed in [3],[5].

3. System Reformulation
We begin this section with the following assumption imposed
on the nonlinear term ®(z, 0):
yTiv1,0), 1 < <
n is n — i times continuously differentiable with respect to

Assumption 1: The function ¢;(x1,---

its arguments.



Under Assumption 1, it is obvious that gf)ifl(m,ﬂ) is a con-

tinuous function of (z1,--- ,xit1,0). With this property, we

first define
01(x1,22,0) = ¢1(w1,22,0)
0i(x1, -+ yxit1,0) = ¢i(x1, -, Tig1,0)
+5i_1(x1,--- , %4, 0)
On(x1, + y&n,0,u) = ¢n(x1, -+ ,Tn,0)
+ona(z1, - T, 0)  (4)

where ¢ = 2,--- ;n—1. Note that the input v appears in the
last function d,(x, 0, ).

Then, the state transformation z = Ty(z) is defined as

zZ1 X1

Zit1 x2 + 0i(z1, -+, ®ig1,0) (5)
where 1 =1,---
With z = Typ(z), the system (1) is transformed into the fol-

lowing form:

,n—1.

Az + Bu+ Bdn(z,0,u)
Cxz

z

Yy (6)

where 0, (z,0,u) = 5n(m,9,u)|m=%—1(z).
From Assumption 1 and the definition of z = Ty(z), it is
obvious that for a given D, there exist constants v > 0 and
p > 0 such that

16a(2. 6, )| < 2]l + plull, V= € D 7
This linear growth condition is more general than the Lip-
schitz condition as assumed in [1]-[2],[4]-[6],[8] because we
only require the continuity of the function. Obviously, the
eq. (7) does not satisfy the triangularity condition imposed
in [7],[10].
Also, from the definition of =z

Ty(z), we note that
0 guarantees that tlim llyl| = 0 and ||z| is

tlim Izl =
bounded for all ¢ > 0. Thus, our control goal now is to
asymptotically stabilize the system (6) by a linear output

feedback controller.

4. Linear Output Feedback Control Law
The proposed linear output feedback control law with a scal-
ing factor € is

u = K(e)2 (8)
i = Ai+Bu-—L(e)(y—C3) (9)
where K(¢) = [f—%, ,E2] and L(e) = [%, ]t e>0
Now, we state the main theorem.
Theorem 1: Suppose that K = [k, - ,kn] and L =

[T, ,ln]T are selected such that each matrix Ax (= A +
BK and A, := A+ LC is Hurwitz, respectively. Then, there
exist positive constants p* and €* such that for 0 < p < p*
and 0 < e < €*, the origin of the system (6) is asymptotically
stable by the output feedback control law (8)-(9).
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Proof: Define e; = z; — 2;, 1 < i < n. Subtracting the
observer dynamics (9) from the system (6), we have the state
estimate error dynamics as

e =Ar(e)e+ Bon(z,0,u) (10)

where Ar(€) := A+ L(€)C.
With the controller (8), we have the closed-loop system as

2= Ak (€)z + Bon(z,0,u) — BK(e)e (11)

where Ak (€) :== A+ BK(e).

Now, we prove the theorem in three parts.

Part A: First, we define a matrix E. := diag[l,¢,---,€" ']
Since Ag is Hurwitz, we have a Lyapunov equation A% Pk +
Pr Ay —I. Then, using the relation E;'AxE. =
€Ak (€), we obtain a new Lyapunov equation A (¢)* Pk (¢)+
Pr(€)Ak(€) = —e 'E? where Pk (¢) = E.PxE.. With this,
2T Py (€)z for (11).

we set a Lyapunov function V.(z)

Then, along the trajectory of (11),

Ve(2) —€ | Eez|)?

+22" Prc(€) B (2, 0,u) — 22" Pi () BK (€)e

—e | Eez|f?

+2:"E. P E.B6,(2,0,u) — 22" E.Px E.BK (¢)e

—€ | Eezl|* + 2| P ||| Bez ||| B Bén (2, 6, u) |

IA

+2| Px|l[| Eezl[| E< BK ()e]| (12)
Here, we note that
IBBSa(2,0,w)ll < " [ (2,6, u)
< EThlEll T pllul (13)

Also, the controller (8) can be expressed as u = e "KFE.Z.
Thus, we have

lull < e " [[K|[[| Eezll + € " K[| Eeell (14)

Using a property of ||z|| < €!™"||E.z||, we obtain the follow-
ing inequality with a simple algebraic manipulation:

||E€Bc3n(z,6,u)|| <

(v + e PIKID Eez]l + € pll K1 EL6)

Also, we note that EcBK (e)e = e 'BKE.e. Thus,

Ve(z) < —(" =01 —2pe lo2)|| Eez|?
267 (1 + p)oz|| Eez|]| Ecell (16)
where o1 = 2v||Pk|| and o2 = ||Px]||||K]|, which are e-

independent constants.

Part B: The method is similar to Part A. Since Ay is Hur-
witz, we have a Lyapunov equation ATP, + PLA;, = —1I.
Then, we have the following equalities: E-'ApE, = eAr(e),
AT (e)Pr(¢) + Pr(e)AL(¢) = —¢ 'EZ2, and Pr(¢) = E.PLE..
With this, we set a Lyapunov function V,(e) = e” Py (e)e for

(10). Then, along the trajectory of (10),

Vole) = —¢ Y|Eee|® +2¢" E.PLE.Bbn(z,0,u)
—¢ || Bee?

+2[| Pr[[| Ecell|| Ee Bon(z, 0, u)]|

<
(17)



Using (15), we have
Vole) < —¢ (1~ 2p04)|| Ece|”
+2(0s + ¢ po)|Beell |Bll (18)

where o3 = v||Pr|| and o4 = ||P||||K]||, which are e
independent constants.

Part C: Now, for the augmented closed-loop system (10)-
(11), we set a composite Lyapunov function V(z,e) =
eVe(z)+ L Vo(e). Then, using (16) and (18), we have

o3te Tpog

V(z,e) < —ele ' —o1—2pe  on)||Eez|?
+2(1 + p)oz|| Eezl|[| Eee|l

71 _
€ A 22000) gy 12 4 o) BBz
03 + € pos
T
| Eee] | Eee
= - 19
1Bz Bz (19)

where

[() S 1 ]

(14p)oa —1 (et — o1 —2peo2)
The matrix M is positive definite if and only if 1 —2po4 > 0
and det M(e) > 0 where
1- 2p0'4)(671 — 0] — Qpeflaz)
o3+ e lpos
— (14 o +1)? (20)

det M (e)

From (20), the det M(e) > 0 is satisfied for 0 < € < €* where

€ = (1 = 2po4)(1 = 2po3) — poa((1 + p)oz + 1) (21)
: 0'1(1—2p0'4)—|—o'3((]_+p)0-2+1)2

Moreover, from (21), it is obvious that there always exists a
constant p > 0 such that (1—2po4)(1—2po2)—pos((1+p)o2+
1)2 > 0 for 0 < p < p. Then, we take p* := min{1/204, 5}
Thus, the origin of the system (6) with (8)-(9) is asymptot-
ically stable for 0 < p < p* and 0 < € < €*. [ |
Remark 2: The previous theorem has shown that the
asymptotic regulation is achieved for a sufficiently small
bound p in (7). However, it does not require 7y to be small be-
cause for any finite ~, there always exists a constant €* > 0.

5. Illustrative Example
Consider the following system

1 = 2+ 0.5sin(0.01x2)
To = u-+ 499[:1/2
y = o1 (22)

where 0 € [0,1]. Obviously, this system does not satisfy the
existing conditions [1]-[2],[4]-[8],[10]. Note that ¢2(z,0) =

9:0}/ % is not Lipschitz at the origin. The first step is to refor-
mulate the system as proposed. By following the proposed

method, we obtain

2':1 = z2
2o = u+02(z,0,u)
y = = (23)
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where z1 = 1, 22 = x2 + ¢1(x,0), and 02(z,0,u) =
021/%40.00502, % cos(0.0125) +0.005 cos(0.01z2)u. Thus, we
have the inequality such as ||d2(2, 0, u)|| < v||z||+p||lu| where
v = 1.005 and p = 0.005. Now, we select K = [—2.25, —3]
and L = [—4, 74]T such that each matrix Ax and Ar
is Hurwitz. With this selection, we obtain o1 = 2.5139,
o2 = 4.7135, 03 = 1.1409, and o4 = 4.2783. With a simple
algebraic manipulation, we obtain that p* = 0.0063, which
means that the output of the system (22) can be asymptoti-
cally regulated by the proposed method. With the obtained
information thus far, we compute ¢ = 0.0212. We select
€ = 0.02. Thus, the design of the output feedback con-
troller is completed. The initial values are set as z1(0) = 1
and z2(0) = —1, which is equivalent to z:(0) = 1 and
z2(0) = —1.005. From Fig. 1, it is shown that the output is
asymptotically regulated and the other state z2 is also regu-
lated. From the definition of zo = x2 + ¢1(z, 0), in this case,
we also obtain the regulation of state z2.

— z1(=y)
0.8] — — zthat
\
0.6 B
[
047 -
o2t | .
\
ol -\
\
-0.2- \ -
N4
0.4 I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time[sec]

— z2
— - z2hat

I I I I I I
0.2 0.25 0.3 0.35 0.4 0.45 0.5
time[sec]

Fig. 1. State trajectories with (21(0), 22(0)) = (1, —1.005)
and (21(0), 22(0)) = (0,0).

6. Conclusions

We have presented the new result on the asymptotic output
regulation of uncertain nonlinear systems in the Parametric-
Pure-Feedback Form by a linear output feedback control
scheme. With the new state transformation for system refor-
mulation and the utilization of a scaling factor €, we have an-
alytically shown that the proposed method meets the control
goal for the considered uncertain nonlinear systems where
the existing methods are not applicable.
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