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Abstract. The goal of this study is to derive a class of random impulsive
non-local fractional stochastic differential equations with finite delay that

are of Caputo-type. Through certain constraints, the existence of the mild

solution of the aforementioned system are acquired by Kransnoselskii’s
fixed point theorem. Furthermore through Ito isometry and Gronwall’s

inequality, the Hyers-Ulam stability of the reckoned system is evaluated

using Lipschitz condition.

1. Introduction

Fractional differential equations (FDE) have replaced integer-order differen-
tial equations as a popular technique for analysing problems in modern science
and technology and also in the fields of economy and insurance [1,11,13,14,22].
Ahmadova and Mahmudov [2] studied the wellposedness results of Caputo-type
fractional stochastic neutral differential equation systems.

Notably, stochastic disturbances are certain in practical systems due to its
influence in the stability of systems. In [24] dz(t) = kz(t) is unstable when
k > 0, but there is an increase in the stochastic feedback control rz(t)dw(t) to
become dz(t) = kz(t) + rz(t)dw(t), being stable if and only if r2 > 2k. The
above notion clearly implies a certain stochastic control term stabilizing the
unstable system. It is notable and demanding to investigate stochastic stabi-
lization of the deterministic system [16, 23, 25]. The existence and uniqueness
of solutions have made instantaneous transformation in applied mathematics.
S. Wu and B. Zhou [21] established existence and uniqueness of stochastic dif-
ferential equation (SDE) with random impulse and markovian switching under
non-Lipschitz condition, the reader may also refer the monographs [5,6,15,18].

One among the indispensable speculation of dynamical systems in the sta-
bility concepts is taken into notice in research fields through applications. In
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particular, Ulam in 1940 [17] posted an open question for which Hyers [9] an-
swered in the following year. Then, Ulam-Hyers stability was established. The
evolution of the theory paved way for the creative research in stability analysis
(see [3, 7, 8, 10, 20]). Recently, Hyers-Ulam stability of random impulsive sto-
chastic functional differential equations with finite delay are established by Li
et al. [12]. Also, Anguraj et al. [4] investigated the existence and Hyers Ulam
results of random impulsive stochastic functional integrodifferential equations.

This study, which is motivated by previous works, focuses on the existence
and Hyers-Ulam stability of random impulsive fractional stochastic functional
differential equations with finite delays.

Let us consider a random impulsive non-local stochastic fractional differen-
tial equations of the form:

(1)


cDβ

t ϑ(t) = u(t, ϑt) + v(t, ϑt)
dw(t)
dt , t ̸= ζk , t ≥ 0,

ϑ(ζ−k ) = bk (δk )ϑ(ζ
−
k ), k = 1, 2, . . . ,

ϑ(t0) + h(ϑ) = ζ,

where the Caputo fractional cDβ
t is of order β ∈ (0, 1) [12]. A random variable

δk is described from w to Dk
def
= (0, dk ) with 0 < dk < +∞ for k = 1, 2, . . ..

Assume δi, δj to be unrestrained for i ̸= j as i, j = 1, 2, . . .. Suppose T ∈
(t0,+∞), u : [t0,T]×C → Rd, h : [t,T]×C → Rd and v : [t0,T]×C → Rd×m

and bk : Dk → Rd×d, and ϑt is an Rd-valued stochastic process such that
ϑt ∈ Rd, ϑt = {ϑ(t + θ) : −δ ≤ θ ≤ 0}. Let ζk be the impulsive moment from
a strictly increasing sequence, i.e., ζ0 < ζ1 < · · · < ζk < · · · < limk→∞ ζki = ∞,
and ϑ(ζ−k ) = limt→ζk−0 ϑ(t). Assume ζ0 = t0 and ζk = ζk−1+δk as k = 1, 2, . . ..
Evidently, {ζk} is a process with independent increments. Let {N(t), t ≥ 0} be
a simple counting process generated by {ζk} and {w(t) : t ≥ 0} be a given

m-dimensional Wiener process. Denote ℑ(1)
t to be the σ-algebra generated

through {N(t), t ≥ 0} and ℑ(2)
t to be the σ-algebra generated by {w(s), s ≤ t},

provided ℑ(1)
∞ ,ℑ(2)

∞ and ζ are mutually independent.
The significant contribution of this paper includes the succeeding aspects:
(i) There are not many papers that have considered the aforementioned

random impulsive stochastic fractional differential system as in (1).
(ii) The contraction principle is used to the existence results of random

impulsive differential equations in [5,18]. However, using Kransnoselskii’s fixed
point theorem, we analyse the existence findings of fractional random impulsive
stochastic differential equations.

The following is a breakdown of the manuscript’s structure: Section 2 con-
tains some basic definitions and necessary assumptions. In Section 3, certain
needed conditions are assumed for analysing the existence and uniqueness re-
sults of the proposed non-local stochastic system. The Hyers-Ulam stability
of non-local random impulsive stochastic fractional differential equations with
finite delay is shown in Section 4.
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2. Preliminaries

Let (Ω,ℑ,P) be a probability space with filtration {ℑt}, t ≥ 0 satisfying

ℑt = ℑ(1)
t ∨ℑ(2)

t . Let Lp(Ω,Rd) be the accumulation of all strongly measurable,
pth integrable, ℑt measurable, ϑ be an Rd-valued random variable provided,

∥ϑ∥Lp =
(
E ∥ϑ∥p

) 1
p and Eϑ =

∫
Ω
ϑdP. δ > 0 signifies the Banach space of

entire piecewise continuous Rd-valued stochastic process
{
ζ(t), t ∈ [−δ, 0]

}
by

C([−δ, 0],Lp(Ω,Rd)),

∥ξ∥C = sup
θ∈[−δ,0]

(
E ∥ξ(θ)∥p

) 1
p ,

thereby, ξ(θ) ∈ C.
Assume T ∈ (t0,+∞), u : [t0,T]×C → Rd along with v : [t0,T]×C → Rd×m

is Borel measurable.

ϑt0 = ζ = {ζ(θ) : −δ ≤ θ ≤ 0}(2)

is the initial data, where (2) is ℑt0 measurable, [−δ, 0] to Rd-valued random

variable such that E ∥ζ∥2 < ∞.

Definition ([19]). The fractional order integral of the function ϑ(t) ∈ L1([a, b],
Rn) of order β ∈ R+ is described as

Iβa (ϑ(t)) =
1

Γ(β)

∫ t

a

ϑ(s)

(t− s)1−β
ds,

where Γ(·) is the gamma function.

Definition ([19]). The β order Caputo derivative of a function ϑ on the given
interval [a, b] is explained to be

(cDβ
a,tϑ)(t) =

1

Γ(n− β)

∫ t

a

ϑ(n)(s)

(t− s)β+1−n
ds,

n = [β] + 1 and [β] indicates the integer part of β.

Definition. For a specified T ∈ (t0,+∞), an Rd-valued stochastic process
ϑ(t) on t0 − δ ≤ t ≤ T is said to be a solution to (1) along the initial data (2)
if ∀ t0 ≤ t ≤ T, ϑ(t0) = ϕ, {ϑt}t0≤t≤T is ℑt-adapted and

ϑ(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)]
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

× u(s, ϑs)ds+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

×
∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1
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× v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t), t ∈ [t0,T],(3)

where
∏k

j=i bj(δj) = bk (δk )bk−1(δk−1) · · · bi(δi),
∏n

j=m(·) = 1 as m > n and

IA(·) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,

0, if t /∈ A.

Definition. Assume that µ(t) is an Rd-valued stochastic process. If there
exists a real number C > 0 such that for arbitrary ϵ ≥ 0 satisfying

E

∥∥∥∥µ(t)− +∞∑
k=0

[ k∏
i=1

bi(δi)ζ(0) +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t−s)β−1u(s, µs)ds

+
1

Γ(β)

∫ t

ζk

(t−s)β−1u(s, µs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t−s)β−1v(s, µs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t−s)β−1v(s, µs)dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p ≤ ϵ.

For each µ(t) along the initial value µt0 = xt0 = ζ, if there exists a solution ϑ(t)
of (3) with E ∥µ(t)− ϑ(t)∥p ≤ Cϵ, ∀ t ∈ (t0 − δ,T). Subsequently, Hyers-Ulam
Stability is found in (3).

Lemma 2.1 ([12]). Assume that ϕ, φ are two functions, where ϕ, φ ∈ C([a, b],
Rd) and ϕ(t) is non-decreasing. If ϑ(t) ∈ C([a, b],Rd) is a solution of the
following inequality

ϑ(t) ≤ ϕ(t) +

∫ t

a

φ(s)ϑ(s)ds, t ∈ [a, b],

then ϑ(t) ≤ ϕ(t) exp(
∫ t

a
φ(s)ds).

Lemma 2.2 ([12]). For any p ≥ 1 and Θ ∈ Lp
d×m[0,T] a predictable process,

the inequality

sup
s∈[0,t]

E

∥∥∥∥∫ s

0

Θ(η)dw(η)

∥∥∥∥p ≤ (p
2
(p− 1)

)p/2
(∫ t

0

(E ∥Θ(s)∥p)2/p
)p/2

, t ∈ [0,T]

holds.

3. Main results

Let us impose the following assumptions.

(A1) u : [t0,T]×C → Rd satisfies:
(i) ∀ t ∈ [t0,T], u(t, ·) : C → Rd is continuous and ∀ y ∈ C, u(·, y) :
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[t0],T] → Rd is measurable;
(ii) ∃ M > 0 being constant such that

E ∥u(t, y1)− u(t, y2)∥p ≤ M
(
∥y1 − y2∥pC

)
for y1, y2 ∈ C.
(iii) ∃ a constant M > 0 such that

E ∥u(t, y)∥p ≤ M
(
1 + ∥y∥pC

)
.

(A2) h : [t0,T]×C → Rd satisfies:
(i) ∀ t ∈ [t0,T], h(t, ·) : C → Rd is continuous and ∀ y ∈ C, h(·, y) :
[t0],T] → Rd is measurable;
(ii) ∃ M∗ > 0 being constant such that

E ∥h(t, y1)− h(t, y2)∥p ≤ M∗
(
∥y1 − y2∥pC

)
for y1, y2 ∈ C.
(iii) ∃ a constant M∗ > 0 such that

E ∥h(t, y)∥p ≤ M∗
(
1 + ∥y∥pC

)
.

(A3) max
i,k


k∏

j=i

E ∥bj(δj)∥p
 < ∞, ∃ a constant N > 0 ∀ δj ∈ Dj (j =

1, 2, 3, . . .) such that

E

max
i,k


k∏

j=i

E ∥bj(δj)∥p

p

≤ N.

(A4) v : [t0,T]×C → Rd×m appeases
(i) v(t, ·) : C → Rd×m being continuous also ∀ y ∈ C, t ∈ [t0,T],
v(·, y) : [t0,T] → Rd×m is measurable.
(ii) ∃ S(t) : [t0,T] → [0,∞) being continuous and Lq integrable, con-
tinuous and increasing function Ξ : [0,+∞) → [0,+∞) such that

E ∥v(t, y)∥p ≤ S(t)Ξ(∥y∥pC),

subjective to (t, y) ∈ [t0,T]×C, S∗ = sup
t∈[t0,T]

S(t) and the function ϖ

fulfils

lim
δ→∞

inf
ϖ(δ)

δ
= α < ∞.

(A5) Let F = max{1,N} (t−δ)βp−1

(pβ−1)(Γ(β))p (t− t0)
pM < 1.

Theorem 3.1. If the hypotheses (A1)-(A5) are true, the system (3) must have
at least one mild solution

3p−1 max{1,N} (t− δ)βp−1

(pβ − 1)(Γ(β))p

[
M(T− t0)

p +Mp(T− t0)
p/2−1S∗α

]
≤ 1.
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Proof. Let B = C ([t0 − δ,T],Lp(Ω,Rd)) be a space provided,

∥ϑ∥pB = sup
t∈[t0,T]

∥ϑt∥pC ,

where ∥ϑt∥pB = sup
t−δ≤s≤t

E ∥ϑ(s)∥p.

We interpret the mapping Ψ : B → B as

(Ψϑ)(t + t0) = ζ(θ) ∈ Lp (Ω,C) , t ∈ [−δ, 0],

(Ψϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)]

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t).

The problem of detecting the mild solutions for (3) is shorten to find the fixed
point of Ψ.

Now, let us decompose the operator Ψ as

P(ϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)] +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

× u(s, ϑs)ds+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds

]
I[ζk ,ζk+1)(t),

Q(ϑ)(t) =

+∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t).

Let the closed ball Br with centre ϑ and radius r > 0 be denoted by Br = {ϑ ∈
B; ∥ϑ∥pB ≤ r}. The subsequent steps are used to derive the proof.

Step 1: Manifesting, Pϑ+Qϑ ∈ Br where r > 0 and ϑ, ϑ ∈ Br.
Let us prove the part by confliction. That is, ∀ r > 0 and t ∈ [t0,T], ∃
ϑr(·), ϑr

(·) ∈ Br such that

E
∥∥P(ϑr)(t) +Q(ϑ)r(t)

∥∥p > r.
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Consequently,

E
∥∥P(ϑr)(t) +Q(ϑ)r(t)

∥∥p
≤ 3p−1E

∥∥∥∥∥
+∞∑
k=0

[
k∏

i=1

bi(δi) [ζ(0)− h(ϑ)]

]∥∥∥∥∥
p

+ 3p−1E

∥∥∥∥ +∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

×
∫ ζi

ζi−1

(t− s)β−1u(s, ϑr
s)ds+

1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑr
s)ds

]
I[ζk ,ζk+1)(t)

]∥∥∥∥p
+ 3p−1E

∥∥∥∥ +∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑ
r

s)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑ
r

s)dw(s)

]
I[ζk ,ζk+1)(t)

]∥∥∥∥p
≤ 6p−1N [∥ζ(0)∥p +M∗ (1 + ∥ϑr

s∥
p
C)] + 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p

× (t− t0)
pM(1 + ∥ϑr

s∥
p
C) + 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p

× (t− t0)
p/2−1MpS

∗
∫ t

t0

Ξ
(∥∥∥ϑr

s

∥∥∥p
C

)
ds.

Thus

r ≤ 3p−1

[
2N [∥ζ(0)∥p +M∗] + max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(T− t0)

pM

]
+ 3p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
T− t0)

pMr+ 6p−1NM∗r

+ 3p−1

[
max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(T− t0)

p/2−1Mp
S∗

r

∫ t

t0

Ξ(r)ds

]
r,

where Mp = (p(p− 1)/2)p/2.
Also,

sup
t∈[t0,T]

∥ϑr
t∥

p
C = sup

t∈[t0−δ,T]

∥ϑr∥p ≤ ∥ϑr(t)∥pB ≤ r.

The aforesaid inequality being divided by r and r → ∞, by (A3)(ii),

3p−1 max{1,N} (t− δ)βp−1

(pβ − 1)(Γ(β))p

[
M(T− t0)

p +Mp(T− t0)
p/2−1S∗α

]
≥ 1,

which conflicts our assumption. Therefore, ∃ r > 0 such that ϑ, ϑ ∈ Br, Pϑ+
Qϑ ∈ Br.
Step 2: Let ϑ, ϑ ∈ Br for t ∈ [t0,T],

E
∥∥(Pϑ)(t)− (Pϑ)(t)

∥∥p
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≤ 2p−1E

∥∥∥∥∥
+∞∑
k=0

[
k∏

i=1

bi(δi)
[
h(ϑ)− h(ϑ)

]]∥∥∥∥∥
p

+ 2p−1E

∥∥∥∥ +∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(δj)
1

Γ(β)

∫ ζi

ζi−1

(t− s)β−1
[
u(s, ϑs)− ϑ(s, ϑs)

]
ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1
[
u(s, ϑs)− ϑ(s, ϑs)

]
ds

]
I[ζk ,ζk+1)(t)

∥∥∥∥p

≤ 2p−1NM∗∥ϑt − ϑt∥pC + 2p−1E

max
i,k

1,

k∏
j=i

∥bj(δj)∥


p

× 1

Γ(β)

(∫ t

t0

(t− s)β−1E
∥∥u(s, ϑs)− u(s, ϑ)s

∥∥ dsI[ζk ,ζk+1)(t)

)p

≤ 2p−1NM∗∥ϑt − ϑt∥pC + 2p−1 max{1,N} (T− δ)pβ−1

(βp− 1)(Γ(β))p
(t− t0)

p

×M
(∥∥ϑt − ϑt

∥∥p
C

)
,

where ∥∥ϑt − ϑt

∥∥p
C
≤ sup

s∈[t−δ,t]

E
∥∥ϑ(s)− ϑ(s)

∥∥p .
Taking supremum over t and by (A4),∥∥(Pϑ)(t)− (Pϑ)(t)

∥∥p
B

≤ F
∥∥ϑ− ϑ

∥∥p
B

with 0 < F < 1. Hence, P is a contraction on Br.
Step 3: Let {ϑn} ⊂ Br with ϑn → ϑ as n → ∞. For t ∈ [t0,T] by continuity
of v in (A3)(i),

E ∥(Qϑn)(t)− (Qϑ)(t)∥p

≤ max{1,N} (t− δ)pβ−1

(pβ − 1)(Γ(β))p
Mp(t− t0)

p/2−1

∫ t

t0

E ∥v(s, ϑn
s )− v(s, ϑs)∥p ds

→ 0 as n → ∞.

Q is continuous Br.
Step 4: B being a piecewise space, suppose ζk < t1 < t2 < ζk+1(k = 1, 2, . . .)
and ϑ ∈ Br. Then, for any fixed ϑ ∈ Br, through assumptions (A2), (A3)
along with Lemma 2.2,

E ∥(Qϑ)(t2)− (Qϑ)(t1)∥p

≤ 2p−1E

∥∥∥∥ +∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t1

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t1)

∥∥∥∥p
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+ 2p−1E
∥∥∥∥ +∞∑

k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t2

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t2)

∥∥∥∥p
≤ 2p−1 max {1,N}E

∥∥∥∥∥
+∞∑
k=0

1

Γ(β)

∫ t2

t1

(t− s)β−1v(s, ϑs)dw(s)I[ζk ,ζk+1)(t2)

∥∥∥∥∥
p

→ 0 while t2 → t1.

Accordingly, Q maps the bounded sets Br into equicontinuous sets.
Step 5:

sup
t∈[t0,T]

E ∥(Qϑ)(t)∥p

= sup
t∈[t0,T]

E

∥∥∥∥ +∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p
≤ (T− δ)pβ−1

(pβ − 1)(Γ(β))p
max{1,N}Mp ∥S∗∥Lq Ξ(r).

Then {Q(Br)} is uniformly bounded.
Step 6: Let ϵ > 0 such that 0 < ϵ < t− t0. For ϑ ∈ Br,

(Qϑ)(t) =

+∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s)

+
1

Γ(β)

∫ t−ϵ

ζk

(t− s)β−1v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t), t ∈ (t0, t− ϵ).

The setWϵ(t) = {(Qϵϑ)(t) : ϑ ∈ Br} is relatively compact inB ∀ ϵ ∈ (0, t−t0).
We have

E ∥(Qϑ)(t)− (Qϵϑ)(t)∥p ≤ max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
(ϵ)p/2−1

×Mp

∫ t

t−ϵ

S∗Ξ(r)ds.(4)

As ϵ → 0, (1) tends to zero. Thus the set W(t) = {(Qϑ)(t) : ϑ ∈ Br} has
arbitrarily precompact sets and W(t) is relatively compact in B. Therefore, Q
is compact and completely continuous using Arzela-Ascoli theorem.

From Kransnoselskii’s Fixed point theorem, Φϑ = Pϑ+Qϑ has a fixed point
on Br. Therefore, (1) has a mild solution. Thus the proof is complete. □
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Yet, existence of the solution for the system (3) can also be acquired by Banach
Contraction Principle. Let us impose the following assumption

(A3’) Let v(t, ϑt) be continuous, v(t, ϑt) ∈ Lp([t0,T] × C;Rd×m) ∃ M > 0
such that

E ∥v(t, ϑ1)− v(t, ϑ2)∥p ≤ M (ϑ1 − ϑ2)
p
C

for t ∈ [t0,T], ϑ1, ϑ2 ∈ C.

By assuming (A1), (A2) and (A3’) are satisfied, let us consider the subsequent
theorem.

Theorem 3.2. If the hypotheses (A1), (A2) and (A3’) are all true, ∃ a specific
mild solution of (3).

Proof. For every initial value t0 ≥ 0, ϑ0 ∈ Br, an operator U : B → B is
defined such that

(Uϑ)(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)] +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

× u(s, ϑs)ds+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

×
∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1

× v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t) t ∈ [t0,T].

Subsequently,

E
∥∥∥(Uϑ)(t)− (Uϑ̃)(t)

∥∥∥p
≤ 3E

∥∥∥∥∥
+∞∑
k=0

k∏
i=1

bi(δi)
[
h(ϑ)− h(ϑ)

]∥∥∥∥∥
2

+ 3p−1E

max
i,k

1,

k∏
j=i

∥bj(δj)∥


p

×
(

1

Γ(β)

∫ t

t0

(t− s)β−1E
∥∥∥u(s, ϑs)− u(s, ϑ̃s)

∥∥∥ ds)p

+ 3p−1E

max
i,k

1,

k∏
j=i

∥bj(δj)∥


p ( 1

Γ(β)

∫ t

t0

(t− s)β−1

×E
∥∥∥v(s, ϑs)− v(s, ϑ̃s)

∥∥∥ dw(s)
)p

≤ 3p−1NM∗∥ϑt − ϑ̃t∥pC + 3p−1 max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
(t− t0)

p

×M
∥∥∥ϑs − ϑ̃s

∥∥∥p
C
+ 3p−1 max{1,N} (T− δ)pβ−1

(pβ − 1)(Γ(β))p
Mp
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× (t− t0)
p/2M

∥∥∥ϑs − ϑ̃s

∥∥∥p
C
.

Taking supremeum over t,∥∥∥Uϑ− Uϑ̃
∥∥∥p
B
≤ ϖ(t)E

∥∥∥ϑ− ϑ̃
∥∥∥p
B
,

where ϖ(t) = 2p−1 max{1,N} (T−δ)pβ−1

(pβ−1)(Γ(β))pM
[
(t− t0)

p +Mp(t− t0)
p/2

]
.

For sufficiently small 0 < T1 < T, F < 1. Thus U is a contraction mapping.
Through Banach Contraction principle, Uϑ = ϑ is a distinctive solution of

(3). □

4. Stability results

Here, the Hyers-Ulam stability of system (3) are investigated presuming the
hypotheses (A1), (A2) and (A3’).

Theorem 4.1. If the assumption of Theorem 3.2 gets fulfilled, (3) has Ulam-
Hyers stability.

Proof. It is well known that ϑ(t) is the solution of (3).

ϑ(t) =

+∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)] +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

× u(s, ϑs)ds+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, ϑs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

×
∫ ζi

ζi−1

(t− s)β−1v(s, ϑs)dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1

× v(s, ϑs)dw(s)

]
I[ζk ,ζk+1)(t).

By the condition,

E

∥∥∥∥µ(t)− +∞∑
k=0

[ k∏
i=1

bi(δi) [ζ(0)− h(ϑ)] +
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

u(s, µs)ds+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, µs)ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1

v(s, µs)dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, µs)dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p ≤ ϵ.

When t ∈ [t0 − δ,T], E ∥µ(t)− ϑ(t)∥p = 0. Meanwhile for t ∈ [t0,T],

E ∥µ(t)− ϑ(t)∥p ≤ 2p−1E

∥∥∥∥µ(t)− +∞∑
k=0

[ k∏
i=1

bi(δi)[ζ(0)− h(ϑ)]



978 DUMITRU, BANUPRIYA, RAMKUMAR, RAVIKUMAR, AND VARSHINI

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1u(s, µs)ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1v(s, µs)dw(s)

+
1

Γ(β)

∫ t

ζk

(t− s)β−1v(s, µs)dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p
+ 2p−1E

∥∥∥∥ +∞∑
k=0

[ k∏
i=1

bi(δi)[ζ(0)− h(ϑ)]

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1
[
u(s, ϑs)

− u(s, µs)
]
ds+

1

Γ(β)

∫ t

ζk

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds

+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1
[
v(s, ϑs)

− v(s, µs)
]
dw(s) +

1

Γ(β)

∫ t

ζk

(t− s)β−1
[
v(s, ϑ(s))

− v(s, µs)
]
dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p
≤ 2p−1ϵ+ 2p−1I,

whereas,

I = E

∥∥∥∥ +∞∑
k=0

[
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

∫ ζi

ζi−1

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds

+
1

Γ(β)

∫ t

ζk

(t− s)β−1 [u(s, ϑs)− u(s, µs)] ds+
1

Γ(β)

k∑
i=1

k∏
j=i

bj(δj)

×
∫ ζi

ζi−1

(t− s)β−1 [v(s, ϑs)− v(s, µs)] dw(s) +
1

Γ(β)

∫ t

ζk

(t− s)β−1

×
[
v(s, ϑ(s))− v(s, µs)

]
dw(s)

]
I[ζk ,ζk+1)(t)

∥∥∥∥p
× (T− t0)

(p−2)/2 (T− δ)pβ−1

(pβ − 1)(Γ(β))p
M

∫ t

t0

∥ϑs − µs∥pC
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≤ Y1

∫ t

t0

∥ϑ(s)− µ(s)∥pC ds,

where

Y1 = 2p−1Mmax{1,N}(T− t0)
p/2−1 (T− δ)pβ−1

(pβ − 1)(Γ(β))p

[
(T− t0)

p/2 + (p(p− 1)/2)p/2
]
.

So,

E ∥µ(t)− ϑ(t)∥p ≤ 2p−1ϵ+ 2p−1Y1

∫ t

t0

∥µ(s)− ϑ(s)∥pC ds.

Consider∫ t

t0

∥µ(s)− ϑ(s)∥pC ds =

∫ t

t0

sup
θ∈[−δ,0]

E ∥µ(s+ θ)− ϑ(s+ θ)∥p ds

= sup
θ∈[−δ,0]

∫ t+θ

t0+θ

E ∥µ(m)− ϑ(m)∥p dm.

While t ∈ [t0 − δ, t0], E ∥µ(m)− ϑ(m)∥p = 0.
Accordingly,∫ t

t0

∥µs − ϑs∥pC ds = sup
θ∈[−δ,0]

∫ t+θ

t0

E ∥µ(m)− ϑ(m)∥p dm

=

∫ t

t0

E ∥µ(m)− ϑ(m)∥p dm,

E ∥µ(t)− ϑ(t)∥p ≤ 2p−1ϵ+ 2p−1Y1

∫ t

t0

E ∥µ(m)− ϑ(m)∥p dm.

Through Lemma 2.1,

E ∥µ(t)− ϑ(t)∥p ≤ 2p−1ϵ exp(2p−1Y1).

Consequently, ∃ C = 2p−1 exp(2p−1Y1) such that

E ∥µ(t)− ϑ(t)∥p ≤ Cϵ.

Hence the Hyers-Ulam stability of (3) is proved. □

5. Conclusion

A class of Caputo type random impulsive fractional stochastic differential
equations are investigated. The existence and uniqueness of solutions are ac-
quired through Kransnoselskii’s fixed point theorem. Hyers-Ulam stability of
the aforementioned system is obtained using Lipschitz condition.

Acknowledgements. The authors would like to thank the reviewers for their
constructive comments in upgrading the article.
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