• 제목/요약/키워드: text preprocessing

검색결과 135건 처리시간 0.026초

빅데이터를 활용한 샤오미 동향분석 - 국내외 고객인식을 바탕으로 - (Analysis of Xiaomi Trends Using Big Data - Based on Customer Perception at Domestic and Global -)

  • 이은지;문재영
    • 품질경영학회지
    • /
    • 제52권2호
    • /
    • pp.323-340
    • /
    • 2024
  • Purpose: The purpose of this study was to propose useful suggestions by analyzing research Xiaomi which are big data analyses, by collecting data based on Customer Perception in Textom. Methods: The collected data through scraping social media on the Textom site. And data preprocessing was performed using deleting and organizing data(text) that are duplicated, irrelevant, and where there is no meaning. The derived data were analyzed using Textom and Ucinet 6.0 with Text Analysis, WordClould, TF-IDF, Network Analysis, and Emotional analysis. Results: The results of this study are as follows; although the results of Xiaomi's text at domestic and global were similar, it was analyzed that there were perceptions of Xiaomi-related smart home products and cost-effectiveness in Korea, while in foreign countries, there were perceptions of functions and performance centered on smartphones. At domestic and global, the perception of Xiaomi was analyzed to be positive, and implications were presented based on these analysis results. Conclusion: Based on the results, if the product's performance or product competitiveness is considered to be meaningful in the market, and it is expected that there will be an opportunity to change the overall image of Chinese products.

웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구 (Interplay of Text Mining and Data Mining for Classifying Web Contents)

  • 최윤정;박승수
    • 인지과학
    • /
    • 제13권3호
    • /
    • pp.33-46
    • /
    • 2002
  • 최근 인터넷에는 기존의 데이터베이스 형태가 아닌 일정한 구조를 가지지 않았지만 상당한 잠재적 가치를 지니고 있는 텍스트 데이터들이 많이 생성되고 있다. 고객창구로서 활용되는 게시판이나 이메일, 검색엔진이 초기 수집한 데이터 둥은 이러한 비구조적 데이터의 좋은 예이다. 이러한 텍스트 문서의 분류를 위하여 각종 텍스트마이닝 도구가 개발되고 있으나, 이들은 대개 단순한 통계적 방법에 기반하고 있기 때문에 정확성이 떨어지고 좀 더 다양한 데이터마이닝 기법을 활용할 수 있는 방법이 요구되고 있다. 그러나, 정형화된 입력 데이터를 요구하는 데이터마이닝 기법을 텍스트에 직접 적용하기에는 많은 어려움이 있다. 본 연구에서는 이러한 문제를 해결하기 위하여 전처리 과정에서 텍스트마이닝을 수행하고 정제된 중간결과를 데이터마이닝으로 처리하여 텍스트마이닝에 피드백 시켜 정확성을 높이는 방법을 제안하고 구현하여 보았다. 그리고, 그 타당성을 검증하기 위하여 유해사이트의 웹 컨텐츠를 분류해내는 작업에 적용하여 보고 그 결과를 분석하여 보았다. 분석 결과, 제안방법은 기존의 텍스트마이닝만을 적용할 때에 비하여 오류율을 현저하게 줄일 수 있었다.

  • PDF

지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법 (Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality)

  • 최석재;이중원;권오병
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.119-138
    • /
    • 2017
  • 최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

Development of big data based Skin Care Information System SCIS for skin condition diagnosis and management

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.137-147
    • /
    • 2022
  • 피부상태의 진단과 관리는 뷰티산업종사자와 화장품산업종사자에게 그 역할을 수행함에 있어서 매우 기초적이며 중요한 기능이다. 정확한 피부상태 진단과 관리를 위해서는 고객의 피부상태와 요구사항을 잘 파악하는 것이 필요하다. 본 논문에서는 피부상태 진단 및 관리를 위해 소셜미디어의 빅데이터를 사용하여 피부상태 진단 및 관리를 지원하는 빅데이터기반 피부관리정보시스템 SCIS를 개발하였다. 개발된 시스템을 사용하여 텍스트 정보 중심의 피부상태 진단과 관리를 위한 핵심 정보를 분석하고 추출할 수 있다. 본 논문에서 개발된 피부관리정보시스템 SCIS는 빅데이터 수집단계, 텍스트전처리단계, 이미지전처리단계, 텍스트단어분석단계로 구성되어 있다. SCIS는 피부진단 및 관리에 필요한 빅데이터를 수집하고, 텍스트 정보를 대상으로 핵심단어의 단순빈도분석, 상대빈도분석, 동시출현분석, 상관성분석을 통해 핵심단어 및 주제를 추출하였다. 또한 추출된 핵심단어 및 정보를 분석하고 산포도, NetworkX, t-SNE 및 클러스터링 등의 다양한 시각화 처리를 함으로써 피부상태 진단 및 관리에 있어 이를 효율적으로 사용할 수 있도록 하였다.

Character Segmentation in Chinese Handwritten Text Based on Gap and Character Construction Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.39-46
    • /
    • 2012
  • Character segmentation is a preprocessing step in many offline handwriting recognition systems. In this paper, Chinese characters are categorized into seven different structures. In each structure, the character size with the range of variations is estimated considering typical handwritten samples. The component removal and merge criteria are presented to remove punctuation symbols or to merge small components which are part of a character. Finally, the criteria for segmenting the adjacent characters concerning each other or overlapped are proposed.

WCTT: HTML 문서 정형화 기반 웹 크롤링 시스템 (WCTT: Web Crawling System based on HTML Document Formalization)

  • 김진환;김은경
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.495-502
    • /
    • 2022
  • 오늘날 웹상의 본문 수집에 주로 이용되는 웹 크롤러는 연구자가 직접 HTML 문서의 태그와 스타일을 분석한 후 수집 채널마다 다른 수집 로직을 구현해야 하므로 유지 관리 및 확장이 어렵다. 이러한 문제점을 해결하려면 웹 크롤러는 구조가 서로 다른 HTML 문서를 동일한 구조로 정형화하여 본문을 수집할 수 있어야 한다. 따라서 본 논문에서는 태그 경로 및 텍스트 출현 빈도를 기반으로 HTML 문서를 정형화하여 하나의 수집 로직으로 본문을 수집하는 웹크롤링 시스템인 WCTT(Web Crawling system based on Tag path and Text appearance frequency)를 설계 및 구현하였다. WCTT는 모든 수집 채널에서 동일한 로직으로 본문을 수집하므로 유지 관리 및 수집 채널의 확장이 용이하다. 또한, 키워드 네트워크 분석 등을 위해 불용어를 제거하고 명사만 추출하는 전처리 기능도 제공한다.

A Rule-Based Analysis from Raw Korean Text to Morphologically Annotated Corpora

  • Lee, Ki-Yong;Markus Schulze
    • 한국언어정보학회지:언어와정보
    • /
    • 제6권2호
    • /
    • pp.105-128
    • /
    • 2002
  • Morphologically annotated corpora are the basis for many tasks of computational linguistics. Most current approaches use statistically driven methods of morphological analysis, that provide just POS-tags. While this is sufficient for some applications, a rule-based full morphological analysis also yielding lemmatization and segmentation is needed for many others. This work thus aims at 〔1〕 introducing a rule-based Korean morphological analyzer called Kormoran based on the principle of linearity that prohibits any combination of left-to-right or right-to-left analysis or backtracking and then at 〔2〕 showing how it on be used as a POS-tagger by adopting an ordinary technique of preprocessing and also by filtering out irrelevant morpho-syntactic information in analyzed feature structures. It is shown that, besides providing a basis for subsequent syntactic or semantic processing, full morphological analyzers like Kormoran have the greater power of resolving ambiguities than simple POS-taggers. The focus of our present analysis is on Korean text.

  • PDF

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.

텍스트 요약을 위한 스파크 기반 대용량 데이터 전처리 (Spark-Based Big Data Preprocessing for Text Summarization)

  • 지동준;전희국;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.383-385
    • /
    • 2022
  • 텍스트 요약(Text Summarization)은 자연어 처리(NLP) 분야의 주요 작업 중 하나이다. 높은 정확성을 보이는 문서 요약 딥 러닝 모델을 만들기 위해서 대용량 학습 데이터가 필요한데, 대용량 데이터 전처리 과정에서 처리 시간, 메모리 관리 등과 같은 문제가 발생한다. 본 논문에서는 대규모 병렬처리 플랫폼 Apache Spark 를 사용해 추상 요약 딥 러닝 모델의 데이터 전처리 과정을 개선하는 방법을 제안한다. 실험 결과 제안한 방법이 기존 방법보다 데이터 전처리 시간이 개선된 결과를 보이고 있다.

텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구 (A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining)

  • 김주영;김동수
    • 한국전자거래학회지
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2016
  • 개방, 공유, 참여를 특징으로 하는 웹 2.0 시대로 들어서면서 인터넷 사용자들의 데이터 생산 및 공유가 쉬워졌다. 이에 따른 데이터의 기하급수적인 증가와 함께 디지털 정보의 대부분인 비정형적 데이터(Unstructured Data)의 양도 증가하고 있다. 인터넷에서 정해진 형식 없이 자연어 형태로 만들어진 비정형 데이터 중, 특정 상품들에 대해 개인이 평가한 리뷰들은 해당 기업이나 해당 상품에 관심이 있는 잠재적 고객에게 필요한 데이터이다. 많은 양의 리뷰 데이터에서 상품에 대한 유용한 정보를 얻기 위해서는 데이터 수집, 저장, 전처리, 분석, 및 결론 도출의 과정이 필요하다. 따라서 본 연구는 R을 이용한 텍스트 마이닝(Text Mining) 기법을 사용하여 텍스트 형식의 비정형 데이터에서 자연어 처리 기술 및 문서 처리 기술을 적용하여 정형화된 데이터 값을 도출하는 방법에 대해 소개한다. 또한, 도출된 정형화된 리뷰 정보를 데이터 마이닝 기법에 적용하여 목적에 맞게 맞춤화된 리뷰 정보를 도출시키는 방안을 제시하고자 한다.