• Title/Summary/Keyword: testing speed

Search Result 1,092, Processing Time 0.027 seconds

A design of BIST circuit and BICS for efficient ULSI memory testing (초 고집적 메모리의 효율적인 테스트를 위한 BIST 회로와 BICS의 설계)

  • 김대익;전병실
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.8
    • /
    • pp.8-21
    • /
    • 1997
  • In this paper, we consider resistive shorts on gate-source, gate-drain, and drain-source as well as opens in MOS FETs included in typical memory cell of VLSI SRAM and analyze behavior of memory by using PSPICE simulation. Using conventional fault models and this behavioral analysis, we propose linear testing algorithm of complexity O(N) which can be applied to both functional testing and IDDQ (quiescent power supply current) testing simultaneously to improve functionality and reliability of memory. Finally, we implement BIST (built-in self tsst) circuit and BICS(built-in current sensor), which are embedded on memory chip, to carry out functional testing efficiently and to detect various defects at high-speed respectively.

  • PDF

Development of Magnetic Phase Detection Sensor for the Steam Generator Tube in Nuclear Power Plants

  • Son, De-Rac;Joung, Won-Ik;Park, Duck-Gun;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.97-100
    • /
    • 2009
  • A new eddy current testing probe was developed to separate the eddy current signal distortion caused by permeability variation clusters and ordinary defects created in steam generator tubes. Signal processing circuits were inserted into the probe to increase the signal-to-noise ratio and allow digital signal transmission. The new probe could measure and separate the magnetic phases created in the steam generator tubes in the operating environment of a nuclear power plant. Furthermore, the new eddy current testing probe can measure the defects in steam generator tubes as rapidly as a bobbin probe with enhanced testing speed and reliability of defect detection.

A Real-scale Wind Tunnel Testing on a Pantograph for High-speed Train to Assess the Aerodynamic Characteristics (고속철도차량용 팬터그래프의 공력특성 평가를 위한 실모형 풍동시험)

  • Kwon, Hyeok-Bin;Cho, Young-Hyeon;Lee, Ki-Won;Kim, Ki-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.732-737
    • /
    • 2009
  • Wind tunnel testing on the real-scale pantograph for high-speed train has been conducted to investigate the aerodynamic characteristic of the pantograph at high-speed. The mid-scale subsonic wind tunnel of Korea Airforce Acamedy with 3.5m width, 2.45m height, and 8.8m length test section has been employed. The test model has been supported above 50cm height from the bottom of test section using vertical strut to eliminate the boundary layer generated from the bottom of the test section. The height of the pantograph has been varied in three cases, in both of the normal running and reverse running modes. The resultant lift forces of the pantograph to catenary system in all the cases have been measured and the relation between the test conditions and the lift forces have been extensively analyzed.

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Current status of the low-to-medium speed Urban Maglev Systems (중.저속형 도시형 자기부상열차 개발 현황)

  • Kim, Dong-Sung;Back, Su-Hyun;Jeong, Jin-Cheol;Kim, Bong-Seop;Park, Doh-Young;Park, Seong-Whan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1049-1058
    • /
    • 2011
  • Current status of the low-to-medium speed Urban MagLev Systems were studied, for Korean UTM(Urban Transit Maglev), Japanese HSST(High Speed Surface Transport) and Chinese CMS(Chinese Maglev System). Mainly, process of development, testing facilities, specifications of maglev systems and public service program were compared respectively.

  • PDF

Disign Technique and Testability Analysis of High Speed Full-Swing BiCMOS Circuits (테스트가 용이한 고속 풀 스윙 BiCMOS회로의 설계방식과 테스트 용이도 분석)

  • Lee, Jae Min;Jung, Kwang Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.199-205
    • /
    • 2001
  • With the growth of BiCMOS technology in ASIC design, the issue of analyzing fault characteristics and testing techniques for BiCMOS circuits become more important In this paper, we analyze the fault models and characteristics of high speed full-swing BiCMOS circuits and the DFT technique to enhance the testability of full-swing high speed BiCMOS circuits is discussed. The SPICE simulation is used to analyze faults characteristics and to confirm the validity of DFT technique.

  • PDF

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

Development of Charger/Discharger to Test Performance for EDLC (EDLC를 위한 성능시험용 충방전기 개발)

  • Kim, Geum-Soo;Moon, Jong-Hyun;Cho, Hyun-Cheol;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.16-22
    • /
    • 2012
  • With the increase of consumption of new renewable energy, the use of Electric Double Layer Capacitor(EDLC) is being gradually widened as the next generation energy storage device. In order to expand the market of EDLC which is recently receiving a lot of attraction as a new promising area, development of a charge/discharge cycle tester to measure and test performance, is essential. Therefore, this research designed a circuit to measure capacity and internal resistance and a circuit to measure voltage maintenance properties, based on EDLC's basic charging/discharging properties so it is able to measure the state of charge and discharge at high speed. When evaluating performance characteristics, the 5[V]/100[A] prototype-EDLC charge/discharge testing system developed for this research showed ${\pm}0.1$[%] of accuracy of voltage and current measurement. It was also proved that the developed charge/discharge testing system for EDLC can be applied to the actual industry, when testing the entire system using a program produced for data monitoring and acquisition.

Proposal of Measuring Method and Design for the Testing Curved Railway of the Tilting Train (틸팅열차 기존선 시험운행 곡선구간 설계 및 계측방안 제시)

  • Yoo, Keun-Su;An, Gang-Yell;Lee, Chang-Hun;Han, Ju-Seop;Park, Min-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.173-180
    • /
    • 2008
  • The major objective of this study is to proposal of measuring method and design for the testing curved railway in which the tilting train runs. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks was developed. Besides, the efficiency prediction and the linear synthesis of the existing conventional line for a tiling train service were examined on the preceding studies. So, in this paper we propose the measuring plan and the design of the improvement sections in the testing curved track which was decided as a results of material analysis and field research concerning the extension possibility of transition curves and the bearing of track due to the new developed train traveling. And we look forward to playing a decisive role as reference data on the improvement construction project for the commercial service of the tilting train.

  • PDF