• Title/Summary/Keyword: testing dental implant

Search Result 61, Processing Time 0.023 seconds

Structural Design of a Dental Implant (2): Test Drafting and Manufacturing (치과용 임플란트 구조설계 (2): 시험설계 및 가공제작)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • This paper is the second paper among two papers which constitute the paper about the structural design of a dental implant. This paper completed the test drafting for the structural model of the new dental implant whose structural performance was confirmed and verified through the comparative structural analysis carried out in the first paper. This paper finished the structural design of a dental implant by manufacturing the dental implant using CNC machines and so forth on the basis of the completed draft and finally by evaluating the machining condition of the dental implant. The drafting work was performed using MDT(Mechanical Desk Top). The manufacturing work was carried out using CNC machines, general purpose milling machine, and Wire EDM. The manufactured surface condition of the dental implant was evaluated and confirmed finally using an electron microscope. As a result of evaluation, a testing dental implant with very good condition was designed and manufactured.

Analysis of Implant Prosthesis using 2-Dimensional Finite Element Method (2차원유한요소분석을 이용한 임플란트 보철물의 적합도 분석)

  • Kwon, Ho-Beom;Park, Chan-Je;Lee, Seok-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2006
  • Accurate fit of the implant prosthesis is important in ensuring long term success of osseointegrated implant. Inaccurate fit of the implant prosthesis may give rise to complications and mechanical failure. To evaluate fite of the implant prosthesis, the development of the methods of analyzing the degree of misfit is important in clinical practice. To analyze the degree of the misfit of implant prosthesis, modal testing was used. A 2-dimensional finite element modal testing was accomplished. Four 2-dimensional finite element models with various levels of misfit of implant prostheses were constructed. Thickness gauges were simulated to make misfit in the implant prostheses. With eigenvalue analysis, the natural frequencies of the models were found in the frequency domain representation of vibration. According to the difference of degree of misfit, natural frequencies of the models were changed.

Analysis of Implant Prosthesis Using 2-Dimensional Finite Element Method (2차원 유한요소분석을 이용한 임플란트 보철물의 적합도 분석)

  • Kwon, Ho-Beom;Park, Chan-Je;Lee, Seok-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.251-260
    • /
    • 2006
  • Accurate fit of the implant prosthesis is important in ensuring long term success of osseointegrated implant. Inaccurate fit of the implant prosthesis may give rise to complications and mechanical failure. To evaluate fite of the implant prosthesis, the development of the methods of analyzing the degree of misfit is important in clinical practice. To analyze the degree of the misfit of implant prosthesis, modal testing was used. A 2-dimensional finite element modal testing was accomplished. Four 2-dimensional finite element models with various levels of misfit of implant prostheses were constructed. Thickness gauges were simulated to make misfit in the implant prostheses. With eigenvalue analysis, the natural frequencies of the models were found in the frequency domain representation of vibration. According to the difference of degree of misfit, natural frequencies of the models were changed.

Study on the Fatigue Test and the Accelerated Life Test for Dental Implant using Universal-Joint Test Type (유니버설조인트 시험방식을 이용한 치과용 임플란트의 피로시험 및 가속수명시험에 관한 연구)

  • Do, Gyeong Hun;Lee, Seok Jin;Kim, Jong Mi;Kim, Sung Min
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Purpose : This paper is a comparative analysis results of the fatigue test for dental implants and accelerated life test by using a static type loading device commonly used in Korea and a dynamic type loading device (universal-joint) recommended by FDA. Methods : Fatigue tests of dental implant is based on ISO 14801 and classified into static load test and dynamic load test. The tests were carried out on three test specimens by four load stress steps under each loading device. For analysis on failure mode such as crack, fracture and permanent deformation of test specimens, we used X-ray three-dimensional computed tomography on test specimens before and after the fatigue tests. The design of the accelerated life test was based on the analysis results of the fatigue life data obtained from the dynamic load test and the statistical analysis software (Minitab ver.15) was used to analyze the appropriate life distribution. Results : As a result of the fatigue tests and the accelerated life tests at same acceleration condition under each test method, the fatigue life under the dynamic type loading device (universal-joint) was shorter than when static type loading device was applied. Conclusion : This paper can be used as a reference when the universal-joint type loading device for implants fatigue test is applied as ISO 14801.

Pull-off resistance of a screwless implant-abutment connection and surface evaluation after cyclic loading

  • Alevizakos, Vasilios;Mosch, Richard;Mitov, Gergo;Othman, Ahmed;See, Constantin von
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 2021
  • Purpose. The aim of this study was to investigate to what extent cyclic load affects the screwless implant-abutment connection for Morse taper dental implants. Materials and Methods. 16 implants (SICvantage max) and 16 abutments (Swiss Cross) were used. The screwless implant-abutment connection was subjected to 10,000 cycles of axial loading with a maximum force of 120 N. For the pull-off testing, before and after the same cyclic loading, the required force for disconnecting the remaining 6 implant-abutment connections was measured. The surface of 10 abutments was examined using a scanning electron microscope 120× before and after loading. Results. The pull-off test showed a significant decrease in the vertical force required to pull the abutment from the implant with mean 229.39 N ± 18.23 before loading, and 204.30 N ± 13.51 after loading (P<.01). Apart from the appearance of polished surface areas and slight signs of wear, no visible damages were found on the abutments. Conclusion. The deformation on the polished abutment surface might represent the result of micro movements within the implant-abutment connection during loading. Although there was a decrease of the pull-off force values after cyclic loading, this might not have a notable effect on the clinical performance.

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

In Vitro Study on the Initial Stability of Two Tapered Dental Implant Systems in Poor Bone Quality (연질 골에서 두 종류의 테이퍼 형태 임플란트의 초기 안정성에 관한 실험실적 연구)

  • Kim, Duck-Rae;Kim, Myung-Joo;Kwon, Ho-Beom;Lee, Seok-Hyung;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.391-401
    • /
    • 2009
  • The successful outcome of dental implants is mainly the result of intial implant stability following placement. The aim of this study was to investigate the effect of a self-tapping blades and implant design on initial stability of two tapered implant systems in poor bone quality. The two different implant systems included one with self-tapping blades and one without self-tapping blades. D4 bone model using Solid Rigid Polyurethane Form was used to simulate poor bone densities. The insertion torque during implant placement was recorded. Resonance frequency Analysis (RFA), measured as the implant stability quotient (ISQ), was assessed immediately after insertion. Finally, the implant-bone specimen was transferred to an Universal Testing Machine to measure the axial pull-out force. Insertion torque values and maximum pull-out torque value of the non self-tapping implants were significantly higher than those in the self-tapping group (P = 0.008). No statistically differences were noted between the two implant designs in RFA. Within the each implant system, no correlation among insertion torque, maximum pull-out torque and RFA value could be determined. Higher insertion torque of the non-self-tapping implants appeared to confirm higher clinical initial stability. In conclusion, implants without self-tapping blades have higher initial stability than implants with self-tapping blades in poor bone quality.

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

EFFECTS OF OVERDENTURE RETENTION ON THE AXIAL LOAD OF IMPLANT IN THE MANDIBULAR IMPLANT-SUPPORTED OVERDENTURE (하악 임플란트지지 오버덴춰에서 바 어태치먼트의 유지력이 임플란트의 축력에 미치는 영향)

  • Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.98-107
    • /
    • 2000
  • Three linear strain gauges (KFR-02N-120-C1-23, Kyowa, Japan) were placed around the abutment of implant future and the maximum axial loads on the mandibular implants supporting over dentures were registered in experimental model when the overdenture was removed. The overdenture attachments used in this study were Round bar Hader bar, Dolder bar with and with out spacer. The retention of bar attachment was measured using universal testing machine while being con-trolled by Activating set and Deactivator except in case of the Hader bar. Simultaneously strains were recorded with the strain smart program in strain P-6000 series (Measurement group, Raleigh, USA). The maximum axial load was calculated and compared with each other. The results were as follows: 1. The amount and the timing of the maximum axial loads were different between the right and left implant in all attachment systems. 2. The retention of bar attachment except Hader bar could be adjusted but the controllability was different among the attachment systems. 3. The more the axial load, the higher the retention with Hader bar and Dolder bar without spacer. but the tendency of increase was not shown with round bar and Dolder bar with spacer.

  • PDF