DOI QR코드

DOI QR Code

The effect of the thread depth on the mechanical properties of the dental implant

  • Received : 2014.02.13
  • Accepted : 2015.02.24
  • Published : 2015.04.30

Abstract

PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Keywords

References

  1. Heschl A, Payer M, Platzer S, Wegscheider W, Pertl C, Lorenzoni M. Immediate rehabilitation of the edentulous mandible with screw type implants: results after up to 10 years of clinical function. Clin Oral Implants Res 2012;23: 1217-23. https://doi.org/10.1111/j.1600-0501.2011.02292.x
  2. Testori T, Wiseman L, Woolfe S, Porter SS. A prospective multicenter clinical study of the Osseotite implant: four-year interim report. Int J Oral Maxillofac Implants 2001;16:193-200.
  3. Friberg B, Ekestubbe A, Sennerby L. Clinical outcome of Branemark System implants of various diameters: a retrospective study. Int J Oral Maxillofac Implants 2002;17:671-7.
  4. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991;62:2-4. https://doi.org/10.1902/jop.1991.62.1.2
  5. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin Oral Implants Res 2009;20:327-32. https://doi.org/10.1111/j.1600-0501.2008.01692.x
  6. Lioubavina-Hack N, Lang NP, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res 2006;17:244-50. https://doi.org/10.1111/j.1600-0501.2005.01201.x
  7. Tabassum A, Walboomers XF, Wolke JG, Meijer GJ, Jansen JA. Bone particles and the undersized surgical technique. J Dent Res 2010;89:581-6. https://doi.org/10.1177/0022034510363263
  8. Fanuscu MI, Chang TL, Akça K. Effect of surgical techniques on primary implant stability and peri-implant bone. J Oral Maxillofac Surg 2007;65:2487-91. https://doi.org/10.1016/j.joms.2007.04.017
  9. Markovic A, Calasan D, Colic S, Stojcev-Stajcic L, Janjic B, Misic T. Implant stability in posterior maxilla: bone-condensing versus bone-drilling: a clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:557-63. https://doi.org/10.1016/j.tripleo.2010.11.010
  10. Cehreli MC, Kokat AM, Comert A, Akkocaoglu M, Tekdemir I, Akca K. Implant stability and bone density: assessment of correlation in fresh cadavers using conventional and osteotome implant sockets. Clin Oral Implants Res 2009;20:1163-9. https://doi.org/10.1111/j.1600-0501.2009.01758.x
  11. Padmanabhan TV, Gupta RK. Comparison of crestal bone loss and implant stability among the implants placed with conventional procedure and using osteotome technique: a clinical study. J Oral Implantol 2010;36:475-83. https://doi.org/10.1563/AAID-JOI-D-09-00049
  12. Dos Santos MV, Elias CN, Cavalcanti Lima JH. The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res 2011;13:215-23. https://doi.org/10.1111/j.1708-8208.2009.00202.x
  13. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res 2010;21:213-20. https://doi.org/10.1111/j.1600-0501.2009.01823.x
  14. Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, Boyan BD. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. J Bone Joint Surg Am 2008;90:2485-98. https://doi.org/10.2106/JBJS.G.00499
  15. Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 1996;17:15-22. https://doi.org/10.1016/0142-9612(96)80750-2
  16. Wennerberg A, Albrektsson T, Lausmaa J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of $Al_2O_3$. J Biomed Mater Res 1996;30:251-60. https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<251::AID-JBM16>3.0.CO;2-P
  17. Kim YK, Kim YJ, Yun PY, Kim JW. Effects of the taper shape, dual-thread, and length on the mechanical properties of mini-implants. Angle Orthod 2009;79:908-14. https://doi.org/10.2319/071808-374.1
  18. Sakoh J, Wahlmann U, Stender E, Nat R, Al-Nawas B, Wagner W. Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int J Oral Maxillofac Implants. 2006;21:560-6.
  19. Wilmes B, Ottenstreuer S, Su YY, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop 2008;69:42-50. https://doi.org/10.1007/s00056-008-0727-4
  20. Kim YS, Lim YJ. Primary stability and self-tapping blades: biomechanical assessment of dental implants in medium-density bone. Clin Oral Implants Res 2011;22:1179-84. https://doi.org/10.1111/j.1600-0501.2010.02089.x
  21. Ao J, Li T, Liu Y, Ding Y, Wu G, Hu K, Kong L. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis. Comput Biol Med 2010;40:681-6. https://doi.org/10.1016/j.compbiomed.2009.10.007
  22. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74. https://doi.org/10.1046/j.1365-2842.2002.00891.x
  23. Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, Liu B. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23:65-74.
  24. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010;21:129-36. https://doi.org/10.1111/j.1600-0501.2009.01800.x
  25. Carr AB, Papazoglou E, Larsen PE. The relationship of Periotest values, biomaterial, and torque to failure in adult baboons. Int J Prosthodont 1995;8:15-20.
  26. Isidor F. Mobility assessment with the Periotest system in relation to histologic findings of oral implants. Int J Oral Maxillofac Implants 1998;13:377-83.
  27. Rabel A, Köhler SG, Schmidt-Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig 2007;11:257-65. https://doi.org/10.1007/s00784-007-0115-2
  28. Trisi P, De Benedittis S, Perfetti G, Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin Oral Implants Res 2011;22:567-70. https://doi.org/10.1111/j.1600-0501.2010.02036.x
  29. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14. https://doi.org/10.1111/j.1600-0501.2005.01211.x
  30. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16.
  31. Lee SY, Yang DJ, Yeo S, An HW, Kim SJ, Choi WM, Park KB. Effect of XPEED(R) on Ti implants with deep threads. Key Eng Mater 2012;493-4;442-6.
  32. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52. https://doi.org/10.1034/j.1600-0501.1996.070208.x
  33. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9. https://doi.org/10.1111/j.1600-0501.1997.tb00001.x

Cited by

  1. Evaluation of the effect of self-cutting and nonself-cutting thread designed implant with different thread depth on variable insertion torques: An histomorphometric analysis in rabbits vol.20, pp.4, 2018, https://doi.org/10.1111/cid.12611
  2. Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/7201093
  3. Evaluation of primary stability of single implants placed in fresh extraction sockets: a clinical trial vol.30, pp.2, 2015, https://doi.org/10.1080/13102818.2015.1130585
  4. Inlay osteotome sinus floor elevation with concentrated growth factor application and simultaneous short implant placement in severely atrophic maxilla vol.6, pp.None, 2015, https://doi.org/10.1038/srep27348
  5. Primary Stability Optimization by Using Fixtures with Different Thread Depth According To Bone Density: A Clinical Prospective Study on Early Loaded Implants vol.12, pp.15, 2015, https://doi.org/10.3390/ma12152398
  6. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization vol.5, pp.8, 2019, https://doi.org/10.1021/acsbiomaterials.9b00406
  7. Influence of Implant Thread Morphology on Primary Stability: A Prospective Clinical Study vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6974050
  8. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation vol.10, pp.8, 2015, https://doi.org/10.3390/jcm10081641
  9. Does the Modification of the Apical Geometry of a Dental Implant Affect Its Primary Stability? A Comparative Ex Vivo Study vol.14, pp.7, 2015, https://doi.org/10.3390/ma14071728