• Title/Summary/Keyword: tensor norm

Search Result 10, Processing Time 0.02 seconds

RIGIDITY OF COMPLETE RIEMANNIAN MANIFOLDS WITH VANISHING BACH TENSOR

  • Huang, Guangyue;Ma, Bingqing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1341-1353
    • /
    • 2019
  • For complete Riemannian manifolds with vanishing Bach tensor and positive constant scalar curvature, we provide a rigidity theorem characterized by some pointwise inequalities. Furthermore, we prove some rigidity results under an inequality involving $L^{\frac{n}{2}}$-norm of the Weyl curvature, the traceless Ricci curvature and the Sobolev constant.

BACH ALMOST SOLITONS IN PARASASAKIAN GEOMETRY

  • Uday Chand De;Gopal Ghosh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.763-774
    • /
    • 2023
  • If a paraSasakian manifold of dimension (2n + 1) represents Bach almost solitons, then the Bach tensor is a scalar multiple of the metric tensor and the manifold is of constant scalar curvature. Additionally it is shown that the Ricci operator of the metric g has a constant norm. Next, we characterize 3-dimensional paraSasakian manifolds admitting Bach almost solitons and it is proven that if a 3-dimensional paraSasakian manifold admits Bach almost solitons, then the manifold is of constant scalar curvature. Moreover, in dimension 3 the Bach almost solitons are steady if r = -6; shrinking if r > -6; expanding if r < -6.

The Software Development for Diffusion Tensor Imaging

  • Song, In-Chan;Chang, Kee-Hyun;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.112-112
    • /
    • 2001
  • Purpose: We developed the software for diffusion tensor imaging and evaluated its feasibility in norm brains. Method: Five normal volunteers, aged from 25 to 29 years, were examined on a 1.5 T MR system. the diffusion tensor pulse sequence used a SE-EPI with 6 diffusion gradie directions of (1, 1, 0), (-1, 1,0), (1, 0, 1), (-1, 0, 1), (0, 1, 1), (0, 1, -1) and also with no diffusion gradient. A b-factor of 500 sec/mm2 was used. Measurement parameter were as follows; TR/TE=10000 ms/99 ms, FOV=240 mm, matrix=128$\times$128, slice thickness/gap=6 mm/0 mm, bandwidth=91 kHz and the number of total slices=20. Four repeated axial diffusion images were averaged for diffusion tensor imaging. A total scan 11 of 4 min 30 sec was used. Six full diffusion tensor components of Dxx, Dyy, Dzz, Dxy, Dxz and Dyz were obtained using two-point linear regression model from 7 diffusion-weight images at each pixel and fractional anisotropy and lattice index images was estimated fr their eigenvectors and eigenvalues. Our program was written on a platform of IDL. W evaluated the qualities of fractional anisotropy and lattice index images of normal brains a knew whether our software for diffusion tensor imaging may be feasible.

  • PDF

Optimal Rates of Convergence in Tensor Sobolev Space Regression

  • Koo, Ja-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.153-166
    • /
    • 1992
  • Consider an unknown regression function f of the response Y on a d-dimensional measurement variable X. It is assumed that f belongs to a tensor Sobolev space. Let T denote a differential operator. Let $\hat{T}_n$ denote an estimator of T(f) based on a random sample of size n from the distribution of (X, Y), and let $\Vert \hat{T}_n - T(f) \Vert_2$ be the usual $L_2$ norm of the restriction of $\hat{T}_n - T(f)$ to a subset of $R^d$. Under appropriate regularity conditions, the optimal rate of convergence for $\Vert \hat{T}_n - T(f) \Vert_2$ is discussed.

  • PDF

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS

  • Chao, Xiaoli;Wang, Peijun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.567-577
    • /
    • 2014
  • In this note, we generalize the weak maximum principle in [4] to the case of complete linear Weingarten hypersurface in Riemannian space form $\mathbb{M}^{n+1}(c)$ (c = 1, 0,-1), and apply it to estimate the norm of the total umbilicity tensor. Furthermore, we will study the linear Weingarten hypersurface in $\mathbb{S}^{n+1}(1)$ with the aid of this weak maximum principle and extend the rigidity results in Li, Suh, Wei [13] and Shu [15] to the case of complete hypersurface.

Injective JW-algebras

  • Jamjoom, Fatmah Backer
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.267-276
    • /
    • 2007
  • Injective JW-algebras are defined and are characterized by the existence of projections of norm 1 onto them. The relationship between the injectivity of a JW-algebra and the injectivity of its universal enveloping von Neumann algebra is established. The Jordan analgue of Theorem 3 of [3] is proved, that is, a JC-algebra A is nuclear if and only if its second dual $A^{**}$ is injective.

  • PDF

CRITICAL METRICS ON NEARLY KAEHLERIAN MANIFOLDS

  • Pak, Jin-Suk;Yoo, Hwal-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.9-13
    • /
    • 1992
  • In this paper, we consider the function related with almost hermitian structure on a copact complex manifold. More precisely, on a 2n-diminsional complex manifold M admitting 2-form .ohm. of rank 2n everywhere, assume that M admits a metric g such that g(JX, JY)=g(X,Y), that is, assume that g defines an hermitian structure on M admitting .ohm. as fundamental 2-form-the 'almost complex structure' J being determined by g and .ohm.:g(X,Y)=.ohm.(X,JY). We consider the function I(g):=.int.$_{M}$ $N^{2}$d $V_{g}$, where N is the norm of Nijenhuis tensor N defined by (J,g). by (J,g).

  • PDF