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CRITICAL METRICS ON NEARLY
KAEHLERIAN MANIFOLDS

JIN Suk PAK AND HwaL-LAN YOO

The study of the integral of the scalar curvature R, J(g) := [,, RdVy,
as a function on the set of all Riemannian metrics with the same volume
on a compact manifold, is now classical and it is well-known ([4]) that
the critical points of J(g) are the Einstein metrics; moreover, other
functions of the curvature have been taken as integrands and studied in
[1]-[6], etc. For example, M. Berger([1]) and Y. Muto ([5]) investigated
the critical point conditions of the functions

/ RdV,, / R;iR*dV,, / RijinRF" 4V,
M M M

where Rj; and Rgjin denote the Ricci and curvature tensors expressed
in components, respectively. On the other hand D. E. Blair and S.
Ianus ([3]) gave some results about the function f,,(R — R*)dV, on
a symplectic manifold, where R* is the *-scalar curvature defined by
R* := Rkjthjith for an almost complex structure J.

In this paper, we consider the function related with almost hermit-
1an structure on a compact complex manifold. More precisely, on a
2n-diminsional complex manifold M admitting 2-form §2 of rank 2n ev-
erywhere, assume that M admits a metric g such that ¢(JX,JY) =
g9(X,Y), that is, assume that g defines an hermitian structure on M
admitting 2 as fundamental 2-form-the ‘almost complex structure’ J
being determined by ¢ and © : ¢(X,Y) = Q(X,JY). We consider the
function I(g) := [,, HNH2dVg, where | N|| is the norm of Nijenhuis ten-
sor N defined by (J, ¢). Then, for this function restricted on the set of
all nearly Kaehler mitrics on M, we can show the following theorem;
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THEOREM. Let M be a compact almost hermitian manifold and
Mthe set of nearly Kaehler metrics, Then a nearly Kaehler metric is a
critical point of the function I(g) on M if and only if it is a Kaehler
metric. Moreover, the critical metric is unique.

1. Let M be a compact almost hermitian manifold with fundamental

2-form Q and dim M = 2n, i.e.,
g(X,JY) = Q(X,Y) and g(X,¥) = ¢(J X, JY)

where J is an almost complex structure. We remark that g and J are
constructed simultaneously by polarization of 2 evaluated on a local
orthonormal basis of an arbitrary Riemannian metric. It is well-known
that all hermitian metrics have the same volume element so that we
may say [,,dV, = 1. The set A of all hermitian metrics is infinite
dimensional and is totally geodesic in the set of all Riemannian metrics
on M. From now on we consider the function

I(g) == /M |N||*dV, defined on A.

In the following we use local coordinates and a tensor is expressed
in its components with respect to the natural frame. When we take a
C™ curve g(t) in A, we get several tensor fields defined by

Daii A :
Dji = (g:l’ Db = Dikgkh’ Dit .= D gkt
1
D;* = §(VjDih +v:D;" = 9" Dji), Diji® = viDji" — v, D",
where 7 denotes the covariant differentiation with respect to the metric
g and 7" = g"7,. If ¢g(¢) is a path in A with g(0) = g, then we have

o0J;; 3]h . B
(11) =& =0, —5==~J;D", DuJi*D;’,=~Dji, ¢"'D;i=0.

In general, any symmetric tensor field D satisfying DJ + JD = 0 is
tangent to some curve in A (cf. [2]).
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.h:
Using 6{j8t2} = D;;"* and (1.1), we have
oy ; Ji"
(1.2) v{;t = —(v;Ji)D™ — Ji(v;D") — D;i* J* + D" It

Hence we have

dI(g) a(iijiiVbc"gijCkgai) 1 No.t 2 5 v
B — +"" " aD a
dt /M [ ot 2” ki ” 9 b g

N i 4 -
— / Nbca 2 Jjk gaingng _ 2Njk'DCk!]b]gai
y bt

+ NjkiDaigbngk}dVg
(1.3)

— / Nbca{_QDaintVtJCi + 2JthDahvbJCt _ 4JbtJCivtDai
M
_ 4JSsttvt‘]ac + 4JatD3tvbJsc + 4']athcvbDSt
_ 2Dckatthka _ chkatthab _ 2DCkJatvkat
+2D%* J, 57, JP )}V,

= [ BDuz I + 8550 DN )
M

~8J(7Dai (T J') + 4DM (7, I )74 o)
— 8DM (7, ) (Vo Jr) + 4DM 1, T (70 J (T )
+ 8D (7P T ) (v Jet)|dV.

2. In this section we will consider only nearly Kaehler structure. By

definition a nearly Kaehler structure is an almost hermitian structure
(J,¢g) which satisfies

(Vx DY +(vyJ)X =0
for any vector fields X and Y on M.
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If (J,¢) is a nearly Kaehler structure, then we have

I (VeDas (7' T*) = T(7:Dai)(Ve ") = 0,
and consequently from (1.3)

dI
T = [ Duls I I (DI I + AT TN L)
M

- S(Vthc)(Vchh) + 4JsaJhb(VtJac)(Vchs)
+8(7 TNy JedV,

(2.1) _ —32/ Dad(T° Y7 J M)V,
M

On the other hand Dj; must satisfy the only condition
(2.2) / Djig?'dV, = 0.
M

Let g be a nearly Kaehler metric such that, for every C™ curve g(¢)
of M satisfying ¢(0) = g, I(g(t)) has vanishing derivative at t = 0. Then
from (2.1) and (2.2) it follows that

(2.3) -32(° T (7, ") = cg™t, ¢ = const.
for this metric § and consequently
2ne = —32(V* IV Jet).

By the way, transvecting J;°Je; to (2.3) and using the fact that (J, )
1s nearly Kaehlerian, we can obtain

e = =327 TNV, Jet)

and so ¢ = 0, that is, 5/,J.; = 0 for this metric g. Hence we can assert
that the formal part of main theorem stated in introduction is true.
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Next, we differentiate again (2.1) with respect to the parameter £.
Taking account of (J, g) being nearly Kaehlerian, we can easily find

d’1 oD i s yci st ¢
dt(zg) = —32 /M [ 57 (VTN T, + Dae =D* (7, T4V, ")

+D;° T (7, ") + DT (v J")
H VTNV, Deb) I + (VTN (VI ") Des
_Dschbh(VSJct) + Dsthcb(vcht)‘}] dVg

=32 / Dye Dy (7,7 (72 J*€)dV,.
M

If we put Dj; = fgji, where f is a C* function on M such that

2
fdV, =0, then ¢ I(g) > 0. This means that the last main theorem
Mg dt?

is also true.
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