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Abstract. Injective JW-algebras are defined and are characterized by the existence of

projections of norm 1 onto them. The relationship between the injectivity of a JW-algebra

and the injectivity of its universal enveloping von Neumann algebra is established. The

Jordan analgue of Theorem 3 of [3] is proved, that is, a JC-algebra A is nuclear if and only

if its second dual A∗∗ is injective.

0. Introduction

The recognition of the importance of completely positive maps in the tensor
products of C*-algebras was due to C. Lance [13] and E. Effors and C. Lance [5]. It
has been used to characterize the so called injective von Neumann algebras [4] and
nuclear C*-algebras [13]. In fact, C. Lance have shown that a C*-algebra A with
completely positive approximation prperty is nuclear [13, Theorem 3.6]. Choi and
Effors then showed that a C*-algebra A is nuclear if and only if its second dual A∗∗

is injective [3, Theorem 3.].
It was shown in [9] that a JC-algebra A is nuclear if and only if its universal

enveloping C*-algebra C∗(A) is nuclear. In analogue with injective C*-algebra (von
Neumann algebra) we introduce the notion of injective JC-algebra (JW-algebra)
which generalises this concept to Jordan algebras. We then establish the relationship
between the injectivity of them and the injectivity of their enveloping algebras, and
the relationship between the nuclearity of a JC-algebra A and the injectivity of its
second dual A∗∗.

A JC-algebra A is a norm (uniformly) closed Jordan subalgebra of the Jordan
algebra B(H)s.a of all bounded self adjoint operators on a Hilbert space H. The Jor-
dan product is given by a◦b = (ab+ba)/2, where juxtaposition denotes the ordinary
operator multiplication. A JW-algebra M ⊆ B(H)s.a is a weakly closed JC-algebra.
The second dual A∗∗ of a JC-algebra A is a JW-algebra whose product extends the
original product in A [11, 4.7.3]. An element a ∈ A is called positive, written a ≥ 0,
if a is of a square [7, 3.3.3]. The set of all positive elements of A is denoted by
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A+. A linear map ϕ : A → B between JC-algebras A and B is called a (Jordan)
homomorphism if it preserve the Jordan product. A Jordan homomorphism which
is one to one is called a Jordan isomorphism. A representation of a JC-algebra A
is a (Jordan) homomorphism π : A → B(H)s.a, for some complex Hilbert space
H. It is known that a (Jordan) homomorphism ϕ between JC-algebras A and B is
continuous, and ϕ(A) is a JC-subalgebra B [7, 3.4.3]. A JC-algebra A is said to be
reversible if a1a2 · · · an+anan−1 · · · a1 ∈ A whenever a1, a2, · · · , an ∈ A, and is said
to be universally reversible if π(A) is reversible for every representation π of A [6,
p. 5].

A projection e of a JW-algebra M is said to be abelian if eMe is associative.
A JW-algebra M is said to be of Type In if there is a family of abelian projections
(eα)α∈J such that cM (eα) = 1M ,

∑
α∈J

eα = 1M and card J = n. A JW-factor is

a JW-algebra with trivial centre; It is known that (see [7, section 5.3]) each Type
I JW-factor is of Type In, for some n, probably infinite. A spin factor Vk is a
(k+ 1)-dimensional JW-factor of Type I2. A spin factor V is universally reversible
when dimV = 3 or 4, non-reversible when dimV 6= 3, 4 or 6, and it can be either
reversible or non-reversible if dimV = 6 [1, p. 280], [7, 6.2.5]. It was shown in
[18, Theorems 6.4 and 6.6] that in every JW-algebra M there is a unique central
projection e such that M = eM ⊕ (1 − e)M , where eM is a universally reversible
JW-algebra and (1−e)M is a JW-algebra of Type I2. Every JW-algebra with out a
direct summand of Type I2 is universally reversible, and a JC-algebra is universally
reversible if and only if it has no factor representation onto a spin factor other than
V2 and V3 [6, Theorem 2.2.] and [7, 6.2.3].

If A is a JC-algebra (resp. a JW-algebra), let C∗(A) (resp. W ∗(A)) be its
universal enveloping C∗-algebra (resp. von Neumann algebra), and let θ (resp. Φ)
be the canonical involutory *-antiautomorphism of C∗(A) (resp. W ∗(A)). Usually
we will regard A as generating Jordan subalgebra of C∗(A) and W ∗(A)) so that θ
and Φ fix each point of A [7, 7.1.8, 7.1.9]. It is known that C∗(A)∗∗ ∼= W ∗(A∗∗)
when A is a JC-algebra [7, 7.1.11], and that a JC-algebra A is universally reversible
if and only if it is reversible in C∗(A). The reader is refered to [1], [2], [6], [7],
[17], [18] for a detailed account of the theory of JC-algebras and JW-algebras. The
relevant background on the theory of C∗-algebras and von Neumann algebras can
be found in [12], [19].

Let A and B be a pair of JC-algebras canonically embedded in their respective
universal enveloping C∗-algebras C∗(A) and C∗(B), respictively, and let λ be a C∗-
norm on C∗(A) ⊗ C∗(B), the algebraic tenor product of C∗(A) and C∗(B). Then
the JC-tensor product of A and B with respect to λ is the completion JC(A ⊗

λ
B)

of the real Jordan algebra J(A⊗B) generated by A⊗B in C∗(A)⊗
λ
C∗(B).

Given a pair of JW-algebras, M andN , canonically embedded in their respective
universal enveloping von Neumann algebras W ∗(M) and W ∗(N)), respictively, the
JW-tensor product JW (M ⊗ N) of M and N is defined to be the JW-algebra
generated by M ⊗ N in the von Neumann tensor product W ∗(M) ⊗ W ∗(N) of
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W ∗(M) and W ∗(N).
The reader is referred to [10] for the properties of the JC-tensor product of JC-

algebras and to [11] for the properties of the JW-tensor product of JW-algebras.

Theorem [10, Corollary 2.3]. Let A and B be JC-algebras. Then

C∗(JC(A⊗
λ
B) = C∗(A)⊗

λ
C∗(B)

where λ is the minimum (min) or the maximum (max) C ∗-norm.

Theorem [11, Corollary 2.3]. Let M be a JW-algebra and N be a JW-algebra with
out type I2,k part. Then

W ∗(M ⊗N) = W ∗(M)⊗W ∗(N).

1. Nuclearity and injectivity

Let A, B be C*-algebras, then the identity map x 7→ x : A⊗B → A⊗B ↪→ A ⊗
min

B extends to a *-homomorphism from A ⊗
max

B onto A ⊗
min

B [19, p. 208]. A C*-

algebra A is said to be nuclear if the maximal and the minimal C*-norms on A⊗B
coincide for any C*-algebra B. Equivalently, if the canonical *-homomorphism from
A ⊗

max
B onto A ⊗

min
B is an isomorphism. The class of nuclear C*-algebras includes

all finite dimensional C*-algebras and all abelian C*-algebras [12, 11.3.7, 11.3.11].
If A is a C∗-algebra, let Mn(A) denote the algebra of n × n matrices x = [xij ],
xij ∈ A with the usual matrix product and the *-operation [xij ]∗ = [x∗ji]. If A acts
as an algebra of operators on a Hilbert space H then Mn(A) acts as a C∗-algebra
of operators on Hn = H ⊕ ...⊕H (n copies of H) if we define

[xij ](ξ1, · · · , ξn) = (
∑
,j

x1jξj , · · · ,
∑
,j

xnjξj), (ξ1, · · · , ξn) ∈ Hn.

The norm thus defined on Mn(A) does not depend on the particular space H on
which A acts since an isomorphism of C∗-algebras is an isometry. An element
x = [xij ], xij ∈ A in Mn(A) is positive if and only if∑

i,,j

< xijξj , ξi >≥ 0, ξ1, · · · , ξn ∈ H.

Let A,B be C∗-algebras (or JC-algebras), and let φ : A → B be a linear mapping.
Define ϕn : Mn(A) → Mn(B) by ϕn([xij ]) = [ϕ(xij)]. We say that ϕ is called
positive if ϕ(A+) ⊆ B+, it is called n-positive if ϕn : Mn(A) → Mn(B) is positive,
and it is called completely positive if ϕn is positive for all n. If ϕ is completely
positive with ϕ(1A) = 1B, then it is called a morphism. It is easy to see that the
composition of completely positive maps is completely positive.
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A C*-algebra (respectively a von Neumann algebra) A is called injective if given
any C*-algebras B,C with B ⊆ C, and any morphism ϕ : B → A, there is a
morphism

∧
ϕ : C → A which extends ϕ [14, p.164]. The well known example of an

injective von Neumann algebra is B(H), the von Neumann algebra of all bounded
linear operators on a Hilbert space H [14, Theorem 3.2.]. The connection between
the nuclearity of a C*-algebras A and the injectivity of its second dual A∗∗ is given
in [3, Theorem 3.], where it is shown that A is nuclear if and only if A∗∗ is injective.
A characterisation of injective von Neumann algebras in terms of projections is give
in [16, Theorem p.46] where it is proved that a von Neumann algebra M ⊆ B(H) is
injective.if and only if there is a Banach space projection P : B(H) → M of norm
1 (that is P 2 = P and ‖P‖ = 1).

Our aim in this paper is to establish the Jordan analogue of these results.

Recall that a JC-algebra A is said to be nuclear if for any JC-algebra B all the
restrictions of C∗-norms on C∗(A) ⊗ C∗(B) coincide on J(A ⊗ B). Equivalently,
the natural surjective map JC(A ⊗

max
B) → JC(A ⊗

min
B) is an isomorphism for

any JC-algebra B [9, Definition 1.1.]. The connection between the nuclearity of a
JC-algebra and the nuclearity of its universal enveloping is given in Theorem 1.2 of
[9] which asserts that any JC-algebra A is nuclear if and only if C∗(A) is nuclear.

Definition 1.1. Let M ⊆ B(H)s.a be a JW-algebra (respectively JC-algebra). We
say that M is injective if for any C*-algebras B,C with B ⊆ C ⊆ B(K) and any

morphism ϕ : Bs.a → M there is a morphism
∧
ϕ : Cs.a → M such that

∧
ϕ |Bs.a

= ϕ.
Throughout, whenever C is a C∗-algebra, we let µC : C → Cs.a be the projection

defined by µC(x) =
x+ x∗

2
, x ∈ C.

Theorem 1.2. Let M ⊆ B(H)s.a be a JW-algebra. Then M is injective if and
only if there is a Banach space projection P : B(H) →M of norm 1.

Proof. Suppose that M is injective, then considering M as a norm closed selfadjoint
subspace of B(H), the identity map id : M → M , being a homomorphism is
completely positive (see [13, Lemma 2.4]), and hence it extends to a morphism

P : B(H)s.a → M such that P |M= id. Let
∼
P : B(H) → M be defined by

∼
P (x) = P (x+x

∗

2 ). Clearly
∼
P is the desired projection.

Conversely, let P : B(H) →M be a norm 1 projection onto M , and let B,C be
C*-algebras with B ⊆ C. If ϕ : Bs.a →M is a morphism and i1 : M ↪→ B(H)s.a ↪→
B(H) is the natural injection, then i1 ◦ ϕ : Bs.a → B(H)is completely positive,
since i1 is completely positive. Since µB : B → Bs.a is a projection, it is completely

positive, and hence the coposition map ψ = i1 ◦ϕ ◦ µB : B
µB→ Bs.a

ϕ→M
i1
↪→ B(H)

is completely positive. By [14, Theorem 3.2.], ψ has a completely positive extension
∧
ψ : C → B(H). But then

∧
ϕ = P ◦

∧
ψ ◦ i2 : Cs.a

i2
↪→ C

∧
ψ→ B(H) P→ M is completely

positive which extends ϕ, and obviously is a morphism, completing the proof. �
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Theorem 1.3. Let M be a JW-algebra with no Type I2 part. Then M is injective
if and only if W ∗(M) is injective.

Proof. Since M has no Type I2 part, M = W ∗(M)ΦM
s.a = {x ∈ W ∗(M) : x = x∗ =

ΦM (x)}, where ΦM is the canonical antiautomorphism of W ∗(M) [7, 7.3.3]. Let
W ∗(M)ΦM = {x ∈ W ∗(M) : x = ΦM (x)}, and let η : W ∗(M)

η→ W ∗(M)ΦM be

defined by η(x) =
x+ ΦM (x)

2
. It is easy to see that η is a projection of W ∗(M)

onto W ∗(M)ΦM , since ΦM is of order 2. Now, let θ = η ◦ µW∗(M) : W ∗(M)
µW∗(M)→

W ∗(M)s.a
η→W ∗(M)ΦM

s.a = M , since µW∗(M) ◦ η = η ◦ µW∗(M), θ is a projection.
Suppose that M is injective, and let B,C be C*-algebras such that B ⊆ C. Let

ψ : B → W ∗(M) be a morphism, then ϕ = θ ◦ ψ ◦ iB : Bs.a
iB
↪→ B

ψ→ W ∗(M) θ→
W ∗(M)ΦM

s.a = M is a morphism, where Bs.a
iB
↪→ B is the natural inclusion map.

Hence, it extends to a morphism
∧
ϕ : Cs.a →M . It is clear now that the composition

map
∧
ψ = iW∗(M)◦

∧
ϕ◦µC : C

µC→ Cs.a
∧
ϕ→M = W ∗(M)s.a

iW∗(M)
↪→ W ∗(M) is a morphism

which extends ψ.
Conversely, suppose that W ∗(M) is injective. We may suppose that W ∗(M) ⊆

B(H) [19, Theorem 1.9.18], then there is a norm 1 projection P of B(H) onto
W ∗(M) by [16, Theorem], and so, θ ◦P : B(H) P→W ∗(M) θ→W ∗(M)ΦM

s.a = M is a
norm 1 projection of B(H) onto M . Therefore, M is injective by Theorem 1.2. �

Lemma 1.4. Let M ⊆ B(H)s.a be a JW-algebra such that M = Ms.a for some
von Neumann algebra M. Then M is injective if and only if M is injective.

Proof. Suppose M is injective. Since M = Ms.a, M is universally reversible, by [7,
7.4.6] and hence it has no Type I2 part [18, Theorems 6.4 and 6.6]. Thus W ∗(M)
is injective, by Theorem 1.3. The identity map id : M = Ms.a → M extends to a

normal *-homomorphism
∧
id : W ∗(M) → M, by the universal property of W ∗(M).

Since M is the von Neumann algebra generated by M = Ms.a,
∧
id(W ∗(M)) = M.

Since ker
∧
id is a weakly closed ideal of W ∗(M), ker

∧
id = eW ∗(M) for some central

projection e of W ∗(M) [12, 6.8.8]. Hence, M ∼= (1− e)W ∗(M). That is, W ∗(M) =

eW ∗(M) ⊕ (1 − e)W ∗(M) ∼= ker
∧
i ⊕ M, which implies that M is injective, by [5,

Corollary 3.2 and Theorem 5.1]. The converse is immediate, since by [16, Theorem],
there is a norm 1 projection P of B(H) onto M, and so µM ◦ P : B(H) P→ M

µM→
Ms.a = M is a norm 1 projection of B(H) onto M . �

Let X be a compact hypertsonean space, and A a JC-algebra. Let C(X,A)
denote the set of all continuous functions on X with values in A. We shall denote
by CC(X) (resp. CR(X)) the algebra of all continuous complex-valued (resp. real-
valued) functions on X.

Corollary 1.5. Let M be an associative JW-algebra, then M is injective.
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Proof. Since M is associative, M ∼= CR(X) for some compact hypertsonean space
X [7, 3.2.2]. Since CC(X) is an abelian von Neumann algebra, it is of Type I1 and
hence is injective by [5, Proposition 3.5 and Theorem 5.1.]. Therefore M is injective
by Lemma 1.4, since CR(X) = (CC(X))s.a. �

Recall that [7, 6.3.10] a JW-algebra M is said to be of Type I2,k if every fac-
tor representation of M is onto the spin factor Vk. If k < ∞, this means that
M = C(X,Vk) for some compact hypertsonean space X; and when k is an infinite
cardinal, it is equivalent to the existence of a weakly dense JC-subalgebra in M of
the form C(X,Vk) for some compact hypertsonean space X (Stacey [17]).

Theorem 1.6. M is a JW-algebra of Type I2, then W ∗(M) is injective.

Proof. Since M is of Type I2, we may write

M =
∑
k∈K

⊕
Mk,

where K is a set of cardinal numbers and where, for each k ∈ K, Mk is a JW-
algebra of Type I2,k (see Stacey [17], or [7, 6.3.14]). Thus, for each k ∈ K, there is
a compact hypertsonean space Xk and a normal surjective homomorphism

πk : C(Xk, Vk)∗∗ →Mk

which extends the the identity map x 7→ x : C(Xk, Vk) → Mk, since C(X,Vk)− =
Mk. By the universal property, this extends to a normal homomorphism

∧
πk : W ∗(C(Xk, Vk)∗∗) →W ∗(Mk)

Note that since C(Xk, Vk) is the JC-algebra CR(Xk) ⊗
min

Vk generated by CR(Xk)⊗Vk
in CC(Xk) ⊗

min
C∗(Vk), we have

CC(Xk) ⊗
min

C∗(Vk) = C∗(C(Xk, Vk)) = C(Xk, C
∗(Vk)),

by Grothendieck’s result [19, 4.4.14, 4.7.3]. Therefore,

W ∗(C(Xk, Vk)∗∗) = C∗(C(Xk, Vk))∗∗ = C(Xk, C
∗(Vk))∗∗,

by [7, 7.1.11]. Since C∗(Vk) can be realised as an inductive limit of finite dimen-
sional C*-algebras [7, 6.2.1, 6.2.2], it is nuclear, by [12, 11.3.12]. Consequently,
C∗(C(Xk, Vk)) = CC(Xk) ⊗

min
C∗(Vk) is nuclear, by [12, 11.3.7] and [15, p. 389], and

hence C(Xk, C
∗(Vk))∗∗ is injective, by [5, Theorem 6.2.] or [15, Theorem A.]. But

since W ∗(Mk) is isomorphic to a W*-closed ideal of C(Xk, C
∗(Vk))∗∗, it is injective

by [5, Proposition 3.1.]. Therefore,

W ∗(M) =
∑
k∈K

⊕
W ∗(Mk)
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is injective, by [5, Proposition 5.4.], proving the Theorem. �

Lemma 1.7. Let Mi ⊆ B(Hi), i = 1, 2 be a JW-algebra. Then M = M1 ⊕M2 is
injective if and only if each Mi is injective.

Proof. Identify H1 with H1⊕0 ↪→ H1⊕H2 and H2 with 0⊕H2 ↪→ H1⊕H2, and let
fi be the projection from H1⊕H2 onto Hi. Also identify B(H1) with B(H1)⊕0 ↪→
B(H1)⊕B(H2) ↪→ B(H1 ⊕H2) and B(H2) with 0⊕B(H2) ↪→ B(H1)⊕B(H2) ↪→
B(H1⊕H2) and note that fi is the identity of B(Hi) so thatM1⊕M2 ⊆ B(H1⊕H2).
Define the map θfi

: B(H1 ⊕H2) → B(Hi) by θfi
(x) = fixfi, x ∈ B(H1 ⊕H2), it

is not hard to see that θfi
is a norm one projection of B(H1 ⊕H2) onto B(Hi).

Suppose that eachMi is injective. Then there is a norm one projection Pi : B(Hi) →
Mi, by Theorem 1.2. If ϕi = Pi ◦ θfi then, for each x ∈ B(H1 ⊕H2)

ϕ2
i (x) = ϕi(Pi(fixfi) = Pi(Pi(fixfi)) = Pi(fixfi) = ϕi(x),

since Pi |Mi
is the identity map. It is easy to see that ‖ϕi‖ = 1, that is, ϕi is a norm

one projection of B(H1⊕H2) onto Mi. Thus the map P : B(H1⊕H2) →M1⊕M2

defined by P (x) = ϕ1(x) ⊕ ϕ2(x) is a norm one projection of B(H1 ⊕ H2) onto
M1 ⊕M2. Hence M1 ⊕M2 is injective, by Theorem 1.2.
Conversely, suppose that M = M1⊕M2 ⊆ B(H1⊕H2) is injective. Then there is a
norm one projection P : B(H1⊕H2) →M1⊕M2 of B(H1⊕H2) onto M1⊕M2, by
Theorem 1.2. Let q1 : M1⊕M2 →M1⊕ 0 ∼= M1 and q2 : M1⊕M2 → 0⊕M2

∼= M2

be the Banach space projections of M1⊕M2 onto M1 and M2, respectively. Define
Pi : B(Hi) →Mi by Pi(x) = qi ◦ P (x), x ∈ B(Hi), then

P 2
i (x) = Pi(qi(P (x))) = qi(P (qi(P (x))) = qi(qi(P (x))) = qi(P (x)) = Pi(x),

since qi(P (x)) ∈Mi, and P |M1⊕M2 is the identity map. Note that

‖Pi‖ = sup{‖qi(P (x))‖ : x ∈ B(Hi), ‖x‖ ≤ 1}
= sup{‖qi(x)‖ : x ∈ B(Hi), ‖x‖ ≤ 1}
≥ ‖qi(id |Mi

)‖ = ‖id |Mi
‖ = 1.

Since the reverse inequality is obvious, Pi is a norm one projection of B(Hi) onto
Mi, and so, Mi is injective, by Theorem 1.2. �

Corollary 1.8. Let M be a JW-algebra. Then

(i) If M is injective so is W ∗(M).

(ii) If M has no Type I2 part and W ∗(M) is injective, then M is injective.

Proof. (i) Let M = M1 ⊕M2, where M1 is a JW-algebra with no Type I2 part and
M2 is a JW-algebra of Type I2 [17]. Then M2 is injective, by Theorem 1.6. If M
is injective, then M1 is injective, by Lemma 1.7, and hence W ∗(M1) is injective, by
Theorem 1.3. Since W ∗(M) = W ∗(M1 ⊕M2) = W ∗(M1) ⊕W ∗(M2) [8, Lemma



274 Fatmah Backer Jamjoom

2.6.], W ∗(M) is injective, by [5, Proposition 5.4.].
(ii) Follows from Theorem 1.3. �

Proposition 1.9. If {Mi}i∈I is a family of JW-algebras, then M =
∑

i∈I

⊕
Mi is

injective if and only if each Mi is injective.

Proof. Suppose that Mi ⊆ B(Hi), for each i ∈ I. Let H =
∑
i∈I

⊕
Hi. For each finite

subset J ⊆ I, let HJ =
∑
i∈J

⊕
Hi (considered as a subspace of H), MJ =

∑
i∈J

⊕
MJ

and let fJ be the projection from H onto HJ . Suppose that each Mi is injective,
then MJ is injective for each finite subset J ⊆ I, by Lemma 1.7. So there is a
norm 1 projection PJ of B(H) onto MJ . With the set of finite subsets of I directed
by inclusion, and since MJ =

∑
i∈J

⊕
MJ ↪→

∑
i∈I

⊕
B(Hi) ↪→ B(HJ) ↪→ B(H), {PJ}

is a directed net of projections in the unit ball of B(H), which is compact in the
topology of simple ultraweak convergence. Let P be the limit point of the net, then
P is the desired projection. That is M is injective. The converse is immediate. �

Lemma 1.10. Let M ⊆ B(H) be a JW-algebra. If M is injective so is M
′
, the set

of all elements of B(H) which commutes with M .

Proof. By Corollary 1.8, W ∗(M) is injective. Let [M ] be the C*-algebra generated
by M in B(H), and let [M ]− be the weak closure of [M ] in B(H). Then the identity

map i : M → [M ]− extends to a norma homomorphism
∧
i : W ∗(M) → [M ]−, which

obviously surjective since both W ∗(M) and [M ]− are generated as von Neumann
algebras by M . Hence [M ]− is isomorphic to a direct summand of W ∗(M), and so
is injective, by [5, Proposition 5.4.]. Therefore the commutant ([M ]−)

′
of [M ]− is

injective, by [5, Theorem 5.1 and Theorem 5.3.]. Since M ⊆ [M ]−, ([M ]−)
′ ⊆ M

′
.

But every element of M
′

commutes with every element of [M ]−, being the weak
closure of the set of all finite linear combinations of M , and since multiplication is
separately weakly continuous, it follows that M

′ ⊆ ([M ]−)
′
, and so, ([M ]−)

′
= M

′
.

That is M
′
is injective. �

It is known that given von Neumann algebras M and N then M
−
⊗N is injective

if an only if both M and N are injective [5, Proposition 5.6.]. The Jordan analogue
of this result is given in the following:

Theorem 1.11. Let M be a JW-algebras, N be a JW-algebra with no type I2 parts.

Then JW (M
−
⊗N) is injective if and only if M and N both are injective.

Proof. Note that JW (M
−
⊗ N) is universally reversible, by [11, Proposition 2.7.],

and hence W ∗(M)
−
⊗W ∗(N) = W ∗(JW (M

−
⊗N)), by [11, Theorem 2.9.]. Therefore,

M and N are injective JW-algebras, if and only if W ∗(M) and W ∗(N) are injective

von Neumann algebras, by Theorem 1.3, if and only if W ∗(M)
−
⊗W ∗(N) is injective

[5, Proposition 5.6.], if and only if JW (M
−
⊗N) is injective by Theorem 1.3. �
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Recall that a C*-algebra A is said to be nuclear if for every C*-algebra B,
there is only one C*-norm on A ⊗ B. Equivalently, the max C*-norm coincides
with the min C*-norm on A ⊗ B [15]. A JC-algebra A is said to be nuclear if for
any JC-algebra B all the restrictions of C*-norms on C∗(A)⊗ C ∗ (B) coincide on
J(A⊗B). Equivalently, the natural surjective map JC(A ⊗

max
B) → JC(A ⊗

min
B) is

an isomorphism [9]. The connection between the nuclearity of a C*-algebra A and
the injectivity of its second dual A∗∗ was studied in [15, Theorem A.], where it has
been shown that A is nuclear if and only if A∗∗ is injective. Our next result gives
the Jordan analogue of this result.

Theorem 1.12. Let A be a JC-algebra with no spin factor representation, then A
is nuclear if and only if its second dual A∗∗ is injective.

Proof. Note first that C∗(A)∗∗ ∼= W ∗(A∗∗) [7, 7.1.11]. Since A has no spin factor
representation, A∗∗ has no type I2 part. Hence, A is nuclear if and only if C∗(A)
is nuclear [9, Theorem 1.2], if and only if C∗(A)∗∗ ∼= W ∗(A∗∗) is injective [15,
Theorem A, p. 387], if and only if A∗∗ is injective, by Theorem 1.3. �

Recall that, given C∗-algebras A, B and C such that B ⊆ C. If A∗∗ is injective
then the natural homomorphism A ⊗

max
B → A ⊗

max
C is an isomorphism [14, Corollary

3.5.].

Our next Theorem is its Jordan analogue.

Theorem 1.13. Let A be a JC-algebra with no spin factor representation. If
A∗∗ is injective then given any JC-algebra B,C with B ⊆ C such that B has no
spin factor representation into spin factor of the form V4n+1, n < ∞, the natural
homomorphism JC(A ⊗

max
B) → JC(A ⊗

max
C) is an isomorphism.

Proof. Since B has no factors representation into spin factors of the form V4n+1,

n < ∞, the inclusion map i : B ↪→ C extends to an isomorphism
∧
i : C∗(B) →

C∗(C) (see [10, p. 86]), which implies that the natural map of the algebraic tensor

product id ⊗
∧
i : C∗(A) ⊗ C∗(B) → C∗(A) ⊗ C∗(C) extends to an isomorphism

of C∗(A) ⊗
min

C∗(B) into C∗(A) ⊗
min

C∗(C), by [19, Proposition 4.4.22.]. If A∗∗is

injective, then A is nuclear, by Theorem 1.12, which implies that C∗(A) is nuclear,
by [9, Theorem 1.2.]. Hence the restriction of the map

C∗(A) ⊗
max

C∗(B) = C∗(A) ⊗
min

C∗(B) ↪→ C∗(A) ⊗
min

C∗(C) = C∗(A) ⊗
max

C∗(C)

to JC(A ⊗
max

B) is the required isomorphism, proving the theorem. �
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