• Title/Summary/Keyword: tenon joint

Search Result 22, Processing Time 0.02 seconds

Evaluation of the Partial Compressive Strength according to the Wood Grain Direction

  • Park, Chun-Young;Kim, Hyung-Kun;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • Bearing occurs by the rotations of members induced from horizontal or vertical load at traditional wooden joint in frame. The bearing between wooden members is not occurring at the whole surface of joint, but occurring only at the particular bearing area. In this study, partial bearing according to the different grain direction was evaluated. The partial compressive strength showed 3 times higher than pure compressive strength perpendicular to grain, 1.5 times higher than parallel to grain and 3.3 times higher than both of them. It is expected that this result can be very importantly applied when evaluating and analyzing the actual behavior of traditional wooden mortise and tenon joint.

Research on damage and identification of mortise-tenon joints stiffness in ancient wooden buildings based on shaking table test

  • Xue, Jianyang;Bai, Fuyu;Qi, Liangjie;Sui, Yan;Zhou, Chaofeng
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.547-556
    • /
    • 2018
  • Based on the shaking table tests of a 1:3.52 scale one-bay and one-story ancient wooden structure, a simplified structural mechanics model was established, and the structural state equation and observation equation were deduced. Under the action of seismic waves, the damage rule of initial stiffness and yield stiffness of the joint was obtained. The force hammer percussion test and finite element calculations were carried out, and the structural response was obtained. Considering the 5% noise disturbance in the laboratory environment, the stiffness parameters of the mortise-tenon joint were identified by the partial least squares of singular value decomposition (PLS-SVD) and the Extended Kalman filter (EKF) method. The results show that dynamic and static cohesion method, PLS-SVD, and EKF method can be used to identify the damage degree of structures, and the stiffness of the mortise-tenon joints under strong earthquakes is reduced step by step. Using the proposed model, the identified error of the initial stiffness is about 0.58%-1.28%, and the error of the yield stiffness is about 0.44%-1.21%. This method has high accuracy and good applicability for identifying the initial stiffness and yield stiffness of the joints. The identification method and research results can provide a reference for monitoring and evaluating actual engineering structures.

Performance Comparison of Korean Tongue and Groove Joint between Hand-made and Pre-cut (주먹장 접합부의 수가공과 기계가공의 성능비교)

  • Kim, Gwang-Chul;Kim, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.664-676
    • /
    • 2016
  • Recently, the demand on the Hanok have been increased with social change. However, Hanok has a major problem of a rising costs caused by hand-made process. So, performance comparison between hand-made process and pre-cut process was conducted to modularize the joints in Hanok. Douglas-fir was used to manufacture the structural size dovetail joints by hand-made and pre-cut precess. The bending strengths on joints with two process were evaluated. The average ultimate load of pre-cut joints was 1.5 times higher than that of hand-made joints. F-test results in both process showed a great relationships between ultimate load and tenon's size variation. The length and thickness of tenon showed a proportional relationship with the ultimate load, but the tenon width showed inverse proportion with the ultimate load. This results may be used as basic data for the joint modularization of Hanok.

A Study on Furniture Terminology (I) -For Traditional Korean Furniture- (가구 용어 연구 I -소목 관련 용어 중심으로-)

  • Moon, Sun-Ok
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.1
    • /
    • pp.61-70
    • /
    • 2009
  • This study intended to explore English of furniture tenn in relation to the joints and moldings in traditional Korean wood furniture, a base of Korean wood furniture, for the development of Korea furniture in the future. The joints such as butt joint, rabbeted joint, mitered joint, mortise-and-tenon joint, fist joint, and finger joint, and the moldings such as a piece of thread molding, half-circle molding, cove molding, flat molding, and triangle molding were analyzed between English and Korean language. The results were only basic terms which must be researched and unified in the traditional Korean furniture. Therefore, the terms in relation to the types, the details, the hardware, and so on, will have to be studied in terms of the meaning originated from the traditional craftsmen.

  • PDF

An Experimental Study on the Roof Exposure Waterproofing Method of Tenon Jointing Type used Shiplap Rubberized Asphalt Color Sheet (반턱 고무 아스팔트 칼라 시트를 이용한 접합부 맞춤식 옥상 노출 방수공법에 관한 실험적 연구)

  • Lee, Jung-Hoon;Lee, Sun-Gyu;Kwak, Hyo-Ya;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.73-77
    • /
    • 2008
  • In this study, we would like to study on the application of roof exposure waterproofing method of joint stability through shiplap rubberized asphalt color sheet to complement problem of fracture, exfoliation and water leakage by existing roof exposure sheet waterproofing material joint weakness. Accordingly, examined basis performance and stability for joint that shiplap rubberized asphalt color sheet through test of that tensile strength, bonding strength, water permeability after bonding, peel resistance after bonding, lengthen resistance after bonding and hang resistance after bonding. The results of this study, waterproofing method to using shiplap rubberized asphalt color sheet is judged to solved fracture, exfoliation and water leakage problems happened in joint by problem was joint of exposure sheet by minimizing gap of joint being integration by shiplap.

  • PDF

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam (낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Park, Moon-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • Members used for the Korean traditional joints have been processed by handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increasedby handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increased by two times with shear failures on the tenon than the control specimens. The maximum tensile strength was obtained in the specimen of 25 degrees, and no difference was observed in the changes of neck widths.

A study on A Cabinet Maker in Western Gyeongnam Porvince in Korea - A Curriculrum of Byeung-Soo Kim, A Master in Korea - (서부경남의 소목장 연구 I - 대한민국 명장 김병수의 교육과정 -)

  • Kim, Min-Keung;Byeon, Hee-Sup;Kim, Chul-Whan;Moon, Sun-Ok
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.409-420
    • /
    • 2015
  • This study intends to explore a teaching philosophy of a Master, a joiner, a cabinet maker, Byeung-Soo Kim who has devoted his entire life on creating and making traditional Korean wood furniture since the elementary school. His teaching method is to make his learners skillful by learning how to make traditional Korean furniture with the traditional technique or joint handmade. They are able to create the furniture in passing through some levels such as a beginning, a middle, a high, and a special class for three years. Each level suggests that the students should study its own joints from laminating, dado, butt, dovetail, mitered, mortise-and-tenon, rabbet, tongue-and-groove and so on. The teaching method is very unique as the technique different and difficult to fine it from other education processes throughout the country.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.