• Title/Summary/Keyword: temperature-dependent development models

Search Result 45, Processing Time 0.027 seconds

Temperature-dependent development models and phenology of Hydrochara affinis (잔물땡땡이의 온도발육모형과 생물계절)

  • Yoon, Sung-Soo;Kim, Myung-Hyun;Eo, Jinu;Song, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.222-230
    • /
    • 2020
  • Temperature-dependent development models for Hydrochara affinis were built to estimate the ecological parameters as fundamental research for monitoring the impact of climate change on rice paddy ecosystems in South Korea. The models predicted the number of lifecycles of H. affinis using the daily mean temperature data collected from four regions (Cheorwon, Dangjin, Buan, Haenam) in different latitudes. The developmental rate of each life stage linearly increased as the temperature rose from 18℃ to 30℃. The goodness-of-fit did not significantly differ between the models of each life stage. Unlike the optimal temperature, the estimated thermal limits of development were considerably different among the models. The number of generations of H. affinis was predicted to be 3.6 in a high-latitude region (Cheorwon), while the models predicted this species to have 4.3 generations in other regions. The results of this study can be useful to provide essential information for estimating climate change effects on lifecycle variations of H. affinis and studies on biodiversity conservation in rice fields.

A Review for Non-linear Models Describing Temperature-dependent Development of Insect Populations: Characteristics and Developmental Process of Models (비선형 곤충 온도발육모형의 특성과 발전과정에 대한 고찰)

  • Kim, Dong-Soon;Ahn, Jeong Joon;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • Temperature-dependent development model is an essential component for forecasting models of insect pests as well as for insect population models. This study reviewed the nonlinear models which explain the relationship between temperature and development rate of insects. In the present study, the types of models were classified largely into empirical and biophysical model, and the groups were subdivided into subgroups according to the similarity of mathematical equations or the connection with original idea. Empirical models that apply analytical functions describing the suitable shape of development curve were subdivided into multiple subgroups as Stinner-based types, Logan-based types, performance models and Beta distribution types. Biophysical models based on enzyme kinetic reaction were grouped as monophyletic group leading to Eyring-model, SM-model, SS-mode, and SSI-model. Finally, we described the historical development and characteristics of non-linear development models and discussed the availability of models.

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae) (콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.577-590
    • /
    • 2022
  • Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

Effect of temperature on the development of the Common Grass Yellow, Eurema hecabe

  • Kim, Seonghyun;Park, Haechul;Park, Ingyun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.35-39
    • /
    • 2015
  • The developmental responses of insects to temperature are important considerations in gaining a better understanding of their ecology and life histories. Temperature-dependent phenology models permit examination of the effects of temperature on the geographical distributions, population dynamics, and management of insects. Measurements of insect developmental and survival responses to temperature pose practical challenges that depend on the chosen modality, variability among individuals, and high mortality rates near the lower and upper threshold temperatures. Different temperature levels can significantly affect larval development of Eurema hecabe. The development of E. hecabe reared on leaves of Lespedeza cuneata was investigated at three temperature regimes (20, 25, and 30℃), a relative humidity of 60%, and a light:dark photoperiod of 14:10 h. The developmental time from larva to adult was 34.3, 20.6, and 17.9 d at temperatures of 20, 25, and 30℃, respectively. Pupal rate was 47.6%, 47.6%, and 61.9% at temperatures of 20, 25, and 30℃, respectively. The developmental threshold temperature estimated from larva to pupae was 8.1℃ with 381.7 degree-days. There is an increasing need for a standardized manual for rearing this butterfly species based on adequate knowledge of its ecology.

NUMERICAL INVESTIGATION OF THE SPREADING AND HEAT TRANSFER CHARACTERISTICS OF EX-VESSEL CORE MELT

  • Ye, In-Soo;Kim, Jeongeun Alice;Ryu, Changkook;Ha, Kwang Soon;Kim, Hwan Yeol;Song, Jinho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The flow and heat transfer characteristics of the ex-vessel core melt (corium) were investigated using a commercial CFD code along with the experimental data on the spreading of corium available in the literature (VULCANO VE-U7 test). In the numerical simulation of the unsteady two-phase flow, the volume-of-fluid model was applied for the spreading and interfacial surface formation of corium with the surrounding air. The effects of the key parameters were evaluated for the corium spreading, including the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The results showed a reasonable trend of corium progression influenced by the changes in the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The modeling of the viscosity appropriate for corium and the radiative heat transfer was critical, since the front progression and temperature profiles were strongly dependent on the models. Further development is required for the code to consider the formation of crust on the surfaces of corium and the interaction with the substrate.

Effect of temperature on the development of Alphitobius diaperinus (Coleoptera: Tenebrionidae)

  • Kim, Seonghyun;Park, Haechul;Park, Ingyun;Han, Taeman;Kim, Hong Geuan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.106-110
    • /
    • 2017
  • The developmental responses of insects to temperature are important considerations in gaining a better understanding of their ecology and life histories. Temperature dependent models permit examination of the effect of temperature on the geographical distributions, population dynamics, and management of insects. The measurements of insect developmental and survival responses to temperature pose practical challenges that depend. The developmental characteristics of A. diaperinus were investigated at four temperature regimes (20, 25, 30 and $35^{\circ}C$), a relative humidity of 60%, and a light:dark photoperiod of 16:8h. The developmental time from larva to adult was 129.0, 49.8, 40.5 and 31.9 days at temperatures of 20, 25, 30 and $35^{\circ}C$, respectively. Pupal rate was 80.0%, 100%, 83.3% and 91.7% at temperatures of 20, 25, 30 and 35 respectively. There is an increasing need for a standardized manual for rearing this. Pupa had significantly lower weights at $35^{\circ}C$ than at the other temperatures. Female pupae (20mg) were significantly heavier than male (17mg).

A Model to Explain Temperature Dependent Systemic Infection of Potato Plants by Potato virus Y

  • Choi, Kyung San;Toro, Francisco del;Tenllado, Francisco;Canto, Tomas;Chung, Bong Nam
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of $16^{\circ}C$ to $32^{\circ}C$. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at $20^{\circ}C$ to 5.7 days at $28^{\circ}C$. The estimated lower thermal threshold was $15.6^{\circ}C$ and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.

Population Trends and temperature-Dependent Development of Pear Psylla, Cacopsylla pyricola(Foerster) (Homoptera: Psyllidae) (꼬마배나무이(Cacopsylla pyricola(Foerster)) 발생소장 및 온도별 발육기간)

  • 김동순;조명래;전흥용;임명순;이준호
    • Korean journal of applied entomology
    • /
    • v.39 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • Two Psyllidae species of Cacopsylla pyricola (Foerster) and C. pyrisuga (Foerster)damaging pear trees have been reported in Korea. However, their ecological characteristics and damagepatterns have not been evaluated yet. To establish basic control measures of C. pyricola, field phenology,overwintering ecology, seasonal fluctuation and temperature-dependent development of C. pyricola wereexamined. C. pyricola overwintered under the bark scale of pear trees as winter form adults and theymoved to fruiting twigs from mid-February. Honeydew produced by C. pyricola nymphs and adults asthey feed caused serious black sooty mold on leaves and fruits. The seasonal occurrence of C. pyricolawas different every year. In 1993, characterized by cold temperature and heavy precipitation, C. pyricolapopulation was maintained highly during growing season. However, the population was decreased rapidlyfrom early July in 1994, year of hot and dry weather condition. In 1995, year of average temperature, thedensity of C. pyricola population was decreased during hot months of July and August, and rebuilt up inSeptember and October. The development periods of C. pyricola eggs were 13.33 days at 15"C, 9.32 daysat 20$^{\circ}$C, 7.82 days at 25"C, 6.60 days at 30$^{\circ}$C, and 7.75 days at 35$^{\circ}$C. The development periods ofnymphs were 33.75 days at 15OC, 23.77 days at 20$^{\circ}$C, 15.21 days at 25"C, and 17.40 days at 30$^{\circ}$C. Theirdevelopment periods and mortalities were increased in higher temperatures. The parameters of nonlineardevelopment model, Weibull and linear development models of Cacopsylla pyricola were estimated.models of Cacopsylla pyricola were estimated.

  • PDF

Effects of Temperature on the Development and Fecundity of Maruca vitrata (Lepidoptera: Crambidae) (콩명나방(Maruca vitrata) (나비목: 포충나방과) 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung;Si-Woo, Lee
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.563-575
    • /
    • 2022
  • Maruca vitrata is one of important pests in leguminous crops, especially red bean. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. vitrata for understanding the biological characteristics of the insect species at eight constant temperatures of 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected and larvae successfully developed to the adult stage from 16℃ to 31℃. The developmental period of egg decreased up to 31℃ and after then increased. The developmental period of larva and pupa, and adult longevity of M. vitrata decreased with increasing temperature. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. vitrata were estimated by linear regression as 12.8℃ and 280.8DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 14.2℃ and 31.9℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. vitrata was 17.7℃. In addition, we constructed the oviposition models of adult, using the investigated adult traits including survival, longevity, oviposition period and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M vitrata and to establish the strategy of integrated pest management in legume crops.