DOI QR코드

DOI QR Code

NUMERICAL INVESTIGATION OF THE SPREADING AND HEAT TRANSFER CHARACTERISTICS OF EX-VESSEL CORE MELT

  • Ye, In-Soo (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Jeongeun Alice (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ha, Kwang Soon (Severe Accident & PHWR Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hwan Yeol (Severe Accident & PHWR Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Jinho (Severe Accident & PHWR Safety Research Division, Korea Atomic Energy Research Institute)
  • Received : 2012.02.12
  • Accepted : 2012.06.25
  • Published : 2013.02.25

Abstract

The flow and heat transfer characteristics of the ex-vessel core melt (corium) were investigated using a commercial CFD code along with the experimental data on the spreading of corium available in the literature (VULCANO VE-U7 test). In the numerical simulation of the unsteady two-phase flow, the volume-of-fluid model was applied for the spreading and interfacial surface formation of corium with the surrounding air. The effects of the key parameters were evaluated for the corium spreading, including the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The results showed a reasonable trend of corium progression influenced by the changes in the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The modeling of the viscosity appropriate for corium and the radiative heat transfer was critical, since the front progression and temperature profiles were strongly dependent on the models. Further development is required for the code to consider the formation of crust on the surfaces of corium and the interaction with the substrate.

Keywords

References

  1. C Journeau and M. Fischer, "Ex-vessel Corium Retention Concept", Nuclear Safety in Light Water Reactors - Severe Accident Phenomenology, 1st ed., pp.569-581, Elsevier (2012).
  2. J. M. Seiler, "Core-catcher Crucible in the Reactor Pit, Analysis of the Tian Wan core-catcher", CEA/DTP, EUReport SAM-EUROCORE Report 06 (2002).
  3. M. Fischer, "Ex-vessel core-catcher spreading concept, evaluation of corium cooling by top flooding", Framatome ANP, EU-Report SAMEUROCORE Report 04 (2002).
  4. R. P. Martin, P. W. Duncan-Whiteman and E. S. Williams, "Core Melt Stabilization System Evaluation for the U.S. $EPR^{TM}$", The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Kanazawa, Japan, Sept. 27- Oct. 2, 2009.
  5. W. Widmann, M. Bürger, G. Lohnert, H. Alsmeyer, , W. Tromm, "Experimental And Theoretical Investigations on the COMET Concept for Ex-Vessel Core Melt Retention", Nuclear Engineering and Design, vol. 236(19-21), pp. 2304-2327 (2006). https://doi.org/10.1016/j.nucengdes.2006.03.051
  6. J. M. Veteau and R. Wittmaack, "CORINE Experiments and Theoretical Modeling", Proceeding of FISA-95 EU Research on Severe Accidents, Luxemburg EUR 16896 EN, pp.271-285 (1996).
  7. T. N. Dinh, M. J. Konovalikhin and B. R. Sehgal, "Core Melt Spreading on a Reactor Containment Floor", Progress in Nuclear Energy, vol. 36(4), pp. 405-468 (2000) https://doi.org/10.1016/S0149-1970(00)00088-3
  8. H. Suzuki, T.Matsumoto, I. Sakaki, T. Mitadera, M. Matsumoto, T. Zama, "Fundamental experiment and analysis for melt spreading on concrete floor", Proc. 2nd ASME/JSME Nuclear Engineering Conference 1, ICONE- 2, San Francisco, pp. 403-407 (1993).
  9. G. Engel, G. Fieg, H. Massier, U. Stiegmaier, W. Schütz, "KATS Experiments to Simulate Corium Spreading in the EPR Core Catcher Concept", Proc. OECD Workshop on Ex-Vessel Debris Coolability, pp.148-155 (2000).
  10. H. Alsmeyer, T. Cron, J. J. Foit, G. Messemer, S. Schmidt- Stiefel, W. Häfner, H. Kriscio, "Experiment ECOKATS-2 on Melt Spreading and Subsequent Top Flooding Test and Data Report", Forschungszentrum Karlsruhe, FZKA 7084 (2005).
  11. W. Steinwarz, A. Alemberti, W. Häfner, Z. Alkan, M. Fischer, "Investigations on the Phenomenology of Exvessel Core Melt Behaviour", Nuclear Engineering and Design, vol. 209, pp.139-146 (2001). https://doi.org/10.1016/S0029-5493(01)00396-X
  12. W. Tromm, J.J. Foit, D. Magallon, "Dry and Wet Spreading Experiments with Prototypic Materials at the FARO Facility and Theoretical Analysis", Proc. OECD Workshop on Ex- Vessel Debris Coolability, pp.178-188 (2000).
  13. C. Journeau, E. Boccaccio, C. Brayer, G. Cognet, J-F. Haquet, C. Jegou, P. Piluso, J. Monerris, "Ex-Vessel Corium Spreading: Results from the VULCANO Spreading Tests", Nuclear Engineering and Design, vol. 223, pp. 75- 102 (2003). https://doi.org/10.1016/S0029-5493(02)00397-7
  14. C. Journeau, C. Spengler, J.J. Foit, J.C. Latche, B. Spindler, J.M. Veteau, "Corium Spreading", Nuclear Safety in Light Water Reactors - Severe Accident Phenomenology, 1st ed., pp.345-368, Elsevier (2012).
  15. B. Spindler, J. M. Veteau, C. Brayer, M. Cranga, L. de Cecco, P. Montanelli, D. Pineau, "Assessment of THEMA Code against Dpreading Experiments", Wiss. Ber. FZKA 6475, pp. 221-234 (2000).
  16. H.-J. Allelein, A. Breest, C. Spengler, "Simulation of Core Melt Spreading with LAVA: Theoretical Background and Status of Validation", Wiss. Ber. FZKA 6475, pp. 189-200 (2000).
  17. B. D. Michel, B. Piar, F. Babik, J.-C. Latche, G. Guillard, C. De Pascale, "Synthesis of the Validation of the CROCO v1 Spreading Code", Wiss. Ber. FZKA 408, p.420 (2000).
  18. M. T. Farmer, J. J. Sienicki, B. W. Spencer, "The MELTSPREAD- 1 Computer Code for the Analysis of Transient Spreading in Containments", American Nuclear Society Winter Meeting, Washington, DC, November 11-15 (1990).
  19. R. Wittmaack, "CORFLOW: A Code for the Numerical Simulation of Free-surface Flow", Nucl. Technol., vol. 116, pp.158-180. (1997).
  20. G. Cognet, H. Alsmeyer, W. Tromm, D. Magallon, R. Wittmaack, B. R. Sehgal, W. Widmamm, L. De Cecco, R. Ocelli, G. Azarian, D. Pineau, B. Spindler, G. Fieg, H. Werle, C. Journeau, M. Cranga and G. Laffont, "Corium spreading and coolability CSC Project", Nuclear Engineering and Design, vol. 209(1-3), pp. 127-138 (2001). https://doi.org/10.1016/S0029-5493(01)00395-8
  21. C. Journeau, J. Haquet, B. Spindler, C. Spengler, J. Foit, "The VULCANO VE-U7 Corium Spreading Benchmark", Progress in Nuclear Energy, vol. 48(3), pp. 215-234 (2006). https://doi.org/10.1016/j.pnucene.2005.09.009
  22. ANSYS Inc., Fluent 6.3 User's Guide, Canonsburg, PA, USA (2006).
  23. D. L. Young, "Time-Dependent Multi-material Flow with Large Fluid Distortion", Numerical Methods for Fluid Dynamics (K. W. Morton and M. J. Baines), 1st ed., Academic Press (1983).
  24. J. R. Howell, R. Siegel, M. P. Menguc, Thermal Radiation Heat Transfer, 5th ed., CRC press, pp. 640-655 (2010).
  25. American Nuclear Society (ANS) Standards Committee Working Group ANS-5.1, "American National Standard for Decay Heat Power in Light Water Reactors", ANSI/ ANS-5.1-1979, American Nuclear Society, La Grange Park, IL, USA. (1979).