Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.2.222

Temperature-dependent development models and phenology of Hydrochara affinis  

Yoon, Sung-Soo (National Institute of Ecology)
Kim, Myung-Hyun (National Institute of Agricultural Sciences, RDA)
Eo, Jinu (National Institute of Agricultural Sciences, RDA)
Song, Young-Ju (National Institute of Agricultural Sciences, RDA)
Publication Information
Korean Journal of Environmental Biology / v.38, no.2, 2020 , pp. 222-230 More about this Journal
Abstract
Temperature-dependent development models for Hydrochara affinis were built to estimate the ecological parameters as fundamental research for monitoring the impact of climate change on rice paddy ecosystems in South Korea. The models predicted the number of lifecycles of H. affinis using the daily mean temperature data collected from four regions (Cheorwon, Dangjin, Buan, Haenam) in different latitudes. The developmental rate of each life stage linearly increased as the temperature rose from 18℃ to 30℃. The goodness-of-fit did not significantly differ between the models of each life stage. Unlike the optimal temperature, the estimated thermal limits of development were considerably different among the models. The number of generations of H. affinis was predicted to be 3.6 in a high-latitude region (Cheorwon), while the models predicted this species to have 4.3 generations in other regions. The results of this study can be useful to provide essential information for estimating climate change effects on lifecycle variations of H. affinis and studies on biodiversity conservation in rice fields.
Keywords
Hydrochara affinis; temperature-dependent development models; phenology; rice paddy ecosystems; life stage;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Roh G, A Borzée and Y Jang. 2014. Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla Suweonensis, in relation to sympatric H. Japonica. Ecol. Inform. 24:78-84.   DOI
2 Taylor F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117:1-23.   DOI
3 Yapo ML, S Sylla, Y Tuo, BC Atse and P Kouassi. 2018. Composition and distribution of aquatic insect community of a nonstocked pond of Banco National Park (Cote d'Ivoire, Western Africa). J. Environ. Sci. Comp. Sci. Eng. Tech. 7:247-259.
4 Ydergaard S, A Enkegaard and HF Brodsgaard. 1997. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 85:177-187.   DOI
5 Baek HM, DG Kim, MJ Baek, CY Lee, HJ Kang, MC Kim, JS Yoo and YJ Bae. 2014. Predation efficiency and preference of the Hydrophilid Water Beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean J. Environ. Biol. 32:112-117.   DOI
6 Boda P, G Horváth, G Kriska, M Blahó and Z Csabai. 2014. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101:385-395.   DOI
7 Bonato O, A Lurette, C Vidal and J Fargues. 2007. Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol. Entomol. 32:50-55.   DOI
8 Briere JF, P Pracros, AY Le Roux and JS Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28:22-29.   DOI
9 Campbell A, B Frazer, N Gilbert, A Gutierrez and M Mackauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438.   DOI
10 Choi SK, MH Kim, LJ Choe, J Eo and HS Bang. 2016. Prediction of the flight times of Hydrochara affinis and Sternolophus rufipes in paddy fields based on RCP 8.5 scenario. Korean J. Agric. For. Meteorol. 18:16-29.   DOI
11 Damos P and M Savopoulou-Soultani. 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:ID123405.
12 Dixon AF, A Honek, P Keil, MAA Kotela, AL Sizling and V Jarosik. 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23:257-264.   DOI
13 Eliopoulos PA, DC Kontodimas and GJ Stathas. 2010. Temperature- dependent development of Chilocorus bipustulatus (Coleoptera: Coccinellidae). Environ. Entomol. 39:1352-1358.   DOI
14 Han MS, HK Nam, KK Kang, M Kim, YE Na, HR Kim and MH Kim. 2013. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32:17-23.   DOI
15 Elphick CS. 2000. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14:181-191.   DOI
16 Fujioka M, SD Lee, M Kurechi and H Yoshida. 2010. Bird use of rice fields in Korea and Japan. Waterbirds 33:8-29.   DOI
17 Gillooly JF and SI Dodson. 2000. The relationship of egg size and incubation temperature to embryonic development time in univoltine and multivoltine aquatic insects. Freshw. Biol. 44:595-604.   DOI
18 Han MS, HS Bang, MH Kim, KK Kang, MP Jung and DB Lee. 2010. Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean J. Environ. Agric. 29:427-433.   DOI
19 Han MS, JD Shin, YE Na, NJ Lee, MH Park and SG Kim. 2002. Changes of invertebrate density in rice paddies of different fertilizer managements in demonstration villages of sustainable agriculture. Korean J. Environ. Agric. 21:96-101.   DOI
20 Han MS, YE Na, HS Bang, MH Kim, MK Kim, KA Roh and JT Lee. 2007. The fauna of aquatic invertebrates in paddy field. Korean J. Environ. Agric. 26:267-273.   DOI
21 Hilsenhoff WL. 1995. Aquatic Hydrophilidae and Hydraenidae of Wisconsin (Coleoptera). 2. Distribution, habitat, life cycle and identification of species of Hydrobiini and Hydrophilini (Hydrophilidae: Hydrophilinae). Great Lakes Entomol. 28:97-126.
22 Kim MR, HK Nam, MY Kim, KJ Cho, KK Kang and YE Na. 2013. Status of birds using a rice paddy in South Korea. Korean J. Environ. Agric. 32:155-165.   DOI
23 Kadoya T, SI Suda and I Washitani. 2009. Dragonfly crisis in Japan: a likely consequence of recent agricultural habitat degradation. Biol. Conserv. 142:1899-1905.   DOI
24 Kim JG, YC Choi, JY Choi, HS Sim, HC Park, WT Kim, BD Park, JE Lee, KK Kang and DB Lee. 2007. Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean J. Appl. Entomol. 46:335-341.   DOI
25 Kim JO, SH Lee and KS Jang. 2011. Efforts to improve biodiversity in paddy field ecosystem of South Korea. Reintroduction 1:25-30.
26 Kontodimas DC, PA Eliopoulos, GJ Stathas and LP Economou. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33:1-11.   DOI
27 Kuwagata T, T Hamasaki and T Watanabe. 2008. Modeling water temperature in a rice paddy for agro-environmental research. Agric. For. Meteorol. 148:1754-1766.   DOI
28 Lactin DJ, N Holliday, D Johnson and R Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24:68-75.   DOI
29 Mwalusepo S, HE Tonnang, ES Massawe, GO Okuku, N Khadioli, T Johansson, PA Calatayud and BP Le Ru. 2015. Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models. PLoS One 10:e0130427.   DOI
30 Maruyama A, M Nemoto, T Hamasaki, S Ishida and T Kuwagata. 2017. A water temperature simulation model for rice paddies with variable water depths. Water Resour. Res. 53:10065-10084.   DOI
31 Nietschke BS, RD Magarey, DM Borchert, DD Calvin and E Jones. 2007. A developmental database to support insect phenology models. Crop Prot. 26:1444-1448.   DOI
32 Ohta S and A Kimura. 2007. Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. Agric. For. Meteorol. 147:186-198.   DOI
33 Park CG, HY Kim and JH Lee. 2010. Parameter estimation for a temperature -dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 13:145-149.   DOI
34 Pakulnicka J, P Buczynski, P Dabkowski, E Buczynska, E Stepien, A Szlauer-Lukaszewska and A Zawal. 2016. Development of fauna of water beetles (Coleoptera) in waters bodies of a river valley-habitat factors, landscape and geomorphology. Knowl. Manag. Aquat. Ecosyst. 417:1-21.   DOI
35 Rebaudo F and VB Rabhi. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166:607-617.   DOI
36 Rebaudo F, Q Struelens and O Dangles. 2018. Modelling temperature -dependent development rate and phenology in arthropods: The devRate package for R. Methods Ecol. Evol. 9:1144-1150.   DOI
37 Azrag AG, CW Pirk, AA Yusuf, F Pinard, S Niassy, G Mosomtai and R Babin. 2018. Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PLoS One 13:e0199569.   DOI
38 Logan, JA, DJ Wollkind, SC Hoyt and LK Tanigoshi. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140.   DOI
39 Aghdam HR, Y Fathipour, G Radjabi and M Rezapanah. 2009. Temperature -dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol. 38:885-895.   DOI
40 Archangelsky M. 2004. Higher-level phylogeny of Hydrophilinae (Coleoptera: Hydrophilidae) based on larval, pupal and adult characters. Syst. Entomol. 29:188-214.   DOI