• 제목/요약/키워드: temperature-dependent

검색결과 3,111건 처리시간 0.038초

L-band EDFA 에서의 온도에 따른 이득 변화와 가변 감쇄기를 이용한 온도 보상 (A compensation method for a temperature-dependent gain tilt in L-band EDFA using a voltage-controlled attenuator)

  • 이원경;정희상;주무정
    • 한국광학회지
    • /
    • 제14권1호
    • /
    • pp.12-16
    • /
    • 2003
  • $0^{\circ}C$에서 5$0^{\circ}C$까지 온도를 변화시켜 가며 100 GHz의 채널 간격으로 L-band 40채널을 운용했을 때, 온도에 따른 L-band EDFA의 출력 스펙트럼 변화와 이득 변동폭을 측정하였다. 이득 포화 영역에서의 이득의 변화로 인한 출력 스펙트럼의 변화는 온도에 따른 출력 스펙트럼의 변화와 상반되는 점을 이용하여 1단과 2단 사이에 삽입한 가변 감쇄기를 조절하여 온도에 따른 이득 변동을 보상하였다. 그 결과, $0^{\circ}C$에서 최대 3 dB까지 차이를 보이던 이득 변동 폭은 가변 감쇄기를 이용한 온도 보상으로 1 dB 이내로 줄어듦을 볼 수 있었다.

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

냉장고 가스켓 주위의 시간에 따른 온도변동 특성에 관한 연구 (A Study on the Unsteady Temperature Characteristics at the Refrigerator Gasket Region)

  • 하지수
    • 에너지공학
    • /
    • 제21권2호
    • /
    • pp.138-143
    • /
    • 2012
  • 본 연구는 냉장고 가스켓 주위에서 시간변화에 따른 온도를 측정하여 비정상상태 온도 특성을 규명하기 위해 수행되었다. 가스켓 주위 냉장고 내외부에서의 시간변화 온도 측정을 살펴보면 냉장고의 가동에 따라 주기적인 온도 변화를 관찰할 수 있다. 측정된 온도결과를 보면 열전달 전산해석을 수행하였던 이전의 연구들이 경계조건을 적절히 사용하지 않았기 때문에 이전의 연구결과와 많은 차이를 보여주고 있다. 본 연구에서는 적합한 열전달 전산해석 수행을 위해 실험을 통한 온도 분포를 도출하고 가스켓 주위의 냉장고 내외부의 정확한 열전달 경계조건을 제시하는 것을 목적으로 하여 수행하였다.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 - (Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

Temperature-Dependent Redox Isomerism via Intramolecular Electron Transfer. Synthesis and Properties of Co(dmppz)₂(3,6-dbq)₂ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone)

  • 정옥상;조두환;박성호;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권6호
    • /
    • pp.628-631
    • /
    • 1997
  • The preparation and characterization of $Co(dmppz)_2(3,6-dbq)_2$ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone) are established. Temperature-dependent magnetic moments (100-400 K), variable-temperature IR, and electronic spectra are presented to show that the title complex exhibits an equilibrium via a catechol to cobalt intramolecular electron transfer. At temperatures below 350 K, the charge distribution of the complex is $Co^Ⅲ(dmppz)_2(3,6-dbsq)(3,6-dbcat)$ (3,6-dbsq=3,6-di-tert-butyl-1,2-semiquinonato; 3,6-dbcat=3,6-di-tert-butylcatecholato) whereas at the temperature beyond 390 K, the complex is predominantly Co^Ⅱ(dmppz)_2(3,6-dbsq)_2$ form in the solid state. At the temperature range of 350-390 K a mixture of Co(Ⅲ) and Co(Ⅱ) redox isomers exist at equilibrium. The transition temperature (Tc) of Co(Ⅲ)/Co(Ⅱ) in solution is approximately 50° lower than that in the solid state. In particular, thermal analysis on solid sample of the complex discloses that the transition for the Co(Ⅲ)/Co(Ⅱ) is accompanied by the change in heat content of 12.30 kcal/mol.

미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동 (A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature.)

  • 송삼홍;강명수
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

A Time Dependent Analysis of Thermal Environment in Beehouse

  • Lee, Suk-Gun;Li, Zhenhai;Choi, Kwang-Soo
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1997년도 가을 심포지움 및 학술논문발표요지
    • /
    • pp.20-26
    • /
    • 1997
  • The design or analysis of beehouse inside temperature environment based on steady heat transfer theory causes much deviation and theoretically it is impossible to control the inside temperature lower than the outside temperature under the condition that the bee produces heat and no cooling equipment is installed. But in practical use of beehouse, the inside temperature is somehow lower than the outside temperature because of the heat inertia of concrete floor. (omitted)

  • PDF

인버티드 스태거형 TFT 캐패시턴스의 온도변화 특성 (Temperature Variation Capacitance Characteristics of Inverted Staggered TFT)

  • 정용호;이우선;김남오
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.102-104
    • /
    • 1996
  • The fabrication and analytical expression for the temperature dependent capacitance characteristics of inverted staggered hydrogenerated amorphous silicon thin film transistors(a-si :H TFT) from 303k to 363k were presented. The results show that the experimental capacitance-voltage characteristics at several temperatures are easily measured. Capacitance increased exponentially by gate voltage increase and decreased by temperature increase. C/C(max) ratio decreased at higher temperature, C/C(min) ratio increased at higher temperature.

  • PDF

극저온 물성을 고러한 콘크리트 구조물의 비선형 해석 (Nonlinear Analysis of Concrete Structure at Extremely Low Temperature)

  • 곽효경;송종영;이병국;이광모
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.174-181
    • /
    • 2000
  • A brief review of previous studies on the behaviour of concrete at extremely low temperature is presented in this paper. In addition, to describe temperature dependent behaviour of concrete, simple piecewise linear stress-strain relation is introduced. The proposed curve shows good agreement with experimental stress-strain curves at various temperature conditions. Moreover, numerical analyses for two PC beams are conducted to verify the influence of extremely low temperature to the structural behaviour.

  • PDF