Browse > Article
http://dx.doi.org/10.1016/j.net.2017.08.015

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source  

Mahanthesh, Basavarajappa (Department of Mathematics, Christ University)
Gireesha, Bijjanal Jayanna (Department of Studies and Research in Mathematics, Kuvempu University)
PrasannaKumara, Ballajja Chandra (Government First Grade College)
Shashikumar, Nagavangala Shankarappa (Department of Studies and Research in Mathematics, Kuvempu University)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1660-1668 More about this Journal
Abstract
The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.
Keywords
Average Nusselt Number; Dusty Fluid; Exponential Space Dependent Heat Source; Marangoni Convection; Nano Fluid; Thermal Radiation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B.S. Dandapat, B. Santra, H.I. Andersson, Thermocapillarity in a liquid film on an unsteady stretching surface, Int. J. Heat Mass Transf 46 (2003) 3009-3015.   DOI
2 B.S. Dandapat, B. Santra, K. Vajravelu, The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet, Int. J. Heat Mass Transf 50 (2007) 991-996.   DOI
3 N.F.M. Noor, I. Hashim, Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface, Int. J. Heat Mass Transf 53 (2010) 2044-2051.   DOI
4 N.M. Arifin, R. Nazar, I. Pop, Similarity solution of Marangoni convection boundary layer flow over a flat surface in a nanofluid, J. Appl. Math 634746 (2013) 8.
5 D.R.V.S.R.K. Sastry, A.S.N. Murti, T.P. Kantha, The effect of heat transfer on MHD Marangoni boundary layer flow past a flat plate in nanofluid, Int. J. Eng. Math 581507 (2013) 6.
6 Y. Lin, L. Zheng, X. Zhang, Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity, Int. J. Heat Mass Transfer 77 (2014) 708-716.   DOI
7 R.F. Engberg, M. Wegener, E.Y. Kenig, The impact of Marangoni convection on fluid dynamics and mass transfer at deformable single rising dropletseA numerical study, Chem. Eng. Sci. 116 (2014) 208-222.   DOI
8 Y. Lin, L. Zheng, X. Zhang, MHD, Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model, Mechanics of Time-Dependent Materials 19 (2015) 519-536.   DOI
9 A. Al-Mudhaf, A.J. Chamkha, Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects, Heat Mass Transf 42 (2005) 112-121.   DOI
10 D.M. Christopher, B. Wang, Prandtl number effects for Marangoni convection over a flat surface, Int. J. Therm. Sci. 40 (2001) 564-570.   DOI
11 L. Zheng, X. Zhang, Y. Gao, Analytical solution for Marangoni convection over a liquidevapor surface due to an imposed temperature gradient, Math. Comput. Model 48 (2008) 1787-1795.   DOI
12 T. Hayat, U. Shaheen, A. Shafiq, A. Alsaedi, S. Asghar, Marangoni mixed convection flow with Joule heating and nonlinear radiation, AIP Adv 5 (2015) 077140.   DOI
13 B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, K.L. Krupalakshmi, Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension, Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.04.020 (in press).
14 K.K. Lakshmi, B.J. Gireesha, R.S. Gorla, B. Mahanthesh, Effects of diffusionthermo and thermo-diffusion on two-phase boundary layer flow past a stretching sheet with fluid-particle suspension and chemical reaction: A numerical study, J. Nigerian Math. Soc. 35 (2016) 66-81.   DOI
15 C. Jiao, L. Zheng, Y. Lin, L. Ma, G. Chen, Marangoni abnormal convection heat transfer of power-law fluid driven by temperature gradient in porous medium with heat generation, Int. J. Heat Mass Transf 92 (2016) 700-707.   DOI
16 Y. Lin, B. Li, L. Zheng, G. Chen, Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature, Powder Technol 301 (2016) 379-386.   DOI
17 T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, T. Yasmeen, Impact of Marangoni convection in the flow of carbonewater nanofluid with thermal radiation, Int. J. Heat Mass Transf 106 (2017) 810-815.   DOI
18 M. Sheikholeslami, A.J. Chamkha, Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection, J. Mol Liq 225 (2017) 750-757.   DOI
19 M. Sheikholeslami, D.D. Ganji, Influence of magnetic field on CuO-H2O nanofluid flow considering Marangoni boundary layer, Int. J. Hydrogen Energy 42 (2017) 2748-2755.   DOI
20 M. Sheikholeslami, D.D. Ganji, Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM, Indian J. Phys 41 (2017) 1-7. INIS.
21 J. Buongiorno, L.W. Hu, Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report (No. DOE/ID/14765-8), Massachusetts Institute of Technology Cambridge, 2009. MA 02139-4307.
22 N. Sandeep, C. Sulochana, B.R. Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface, Eng. Sci. Technol. Int. J. 19 (2016) 227-240.   DOI
23 M.A. Hossain, N.C. Roy, S. Siddiqa, Unsteady mixed convection dusty fluid flow past a vertical wedge due to small fluctuation in free stream and surface temperature, Appl. Math. Comput. 293 (2017) 480-492.
24 M. Turkyilmazoglu, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces, Phys. Fluids 29 (2017) 013302.   DOI
25 S. Naramgari, C. Sulochana, MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles, Ain Shams Eng. J. 7 (2016) 709-716.   DOI
26 B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, Suspended particle effect on nanofluid boundary layer flow past a stretching surface, J Nanofluids 3 (2014) 267-277.   DOI
27 M.A. El-Aziz, A.M. Salem, MHD-mixed convection and mass transfer from a vertical stretching sheet with diffusion of chemically reactive species and space-or temperature-dependent heat source, Canadian J. Phys. 85 (2007) 359-373.   DOI
28 B. Mahanthesh, B.J. Gireesha, R.S. Gorla, Mixed convection squeezing threedimensional flow in a rotating channel filled with nanofluid, Int. J. Numer. Method Heat Fluid Flow 26 (2016) 1460-1485.   DOI
29 B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, B.C. Prasannakumara, P. Venkatesh, Numerical investigation on boundary layer flow of a nanofluid towards an inclined plate with convective boundary: Boungiorno nanofluid model, J. Nanofluids 5 (2016) 911-919.   DOI
30 M. Sheikholeslami, Magnetic source impact on nanofluid heat transfer using CVFEM, Neural Comput. Appl (2016) 1-10.
31 M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method, J. Mol. Liq 234 (2017) 364-374.   DOI
32 M. Sheikholeslami, S.A. Shehzad, Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity, Int. J. Heat Mass Transf 109 (2017) 82-92.   DOI
33 S.M. Mousavizadeh, G.R. Ansarifar, M. Talebi, Assessment of the TiO 2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling, Nucl. Eng. Technol 47 (2015) 814-826.   DOI
34 B. Mahanthesh, B.J. Gireesha, C.S.K. Raju, Cattaneo-Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source, Informatics Med Unlocked 9 (2017) 26-34.   DOI
35 L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous, stretching surface with variable temperature, J. Heat Transf 107 (1985) 248-250.   DOI
36 C.H. Chen, Laminar mixed convection adjacent to vertical continuously stretching sheets, J. Heat Mass Transf 33 (1998) 471-476.   DOI
37 M. Sheikholeslami, Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method, J. Mol. Liq 231 (2017) 555-565.   DOI
38 M. Sheikholeslami, CuO-water nanofluid free convection in a porous cavity considering Darcy law, Eur Phys J. Plus 132 (2017) 55.   DOI
39 M. Sheikholeslami, Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder, J. Mol. Liq 229 (2017) 137-147.   DOI
40 M. Sheikholeslami, S.A. Shehzad, Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM, Int. J. Heat Mass Transf 113 (2017) 796-805.   DOI
41 S. Siddiqa, M.A. Hossain, S.C. Saha, Two-phase natural convection flow of a dusty fluid, Int. J. Numer. Method Heat Fluid Flow 25 (2015) 1542-1556.   DOI
42 R. Kumar, S. Sood, M. Sheikholeslami, S.A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, J. Colloid Interface Sci. 505 (2017) 253-265.   DOI
43 M. Sheikholeslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, Int. J. Heat Mass Transf 111 (2017) 1039-1049.   DOI
44 R.E. Singleton, Fluid mechanics of gas-solid Particle Flow in Boundary Layers, Doctoral Dissertation, California Institute of Technology, 1964.
45 M.A. Ezzat, A.A. El-Bary, M.M. Morsey, Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium, Comput. Math. Appl. 59 (2010) 2868-2879.   DOI
46 B.K. Jha, C.A. Apere, Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus, AIP Adv 1 (2011) 042121.   DOI
47 M.R. Mohaghegh, A.B. Rahimi, Three-dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet, J. Heat Transf 138 (2016) 112001.   DOI
48 B.J. Gireesha, B. Mahanthesh, P.T. Manjunatha, R.S.R. Gorla, Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension, J. Nigerian Mathematical Soc. 34 (2015) 267-285.   DOI
49 B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, P.T. Manjunatha, Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension, Heat Mass Transf 52 (2016) 897-911.   DOI