• Title/Summary/Keyword: temperate forest ecosystems

Search Result 35, Processing Time 0.02 seconds

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.

Estimation of Carbon Storage in Three Cool-Temperate Broad-Leaved Deciduous Forests at Jirisan National Park, Korea (지리산국립공원 낙엽활엽수림 세 군락의 탄소저장량 평가)

  • Lee, Na-Yeon
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cool-temperate broad-leaved deciduous forests are one of dominant forest cover types in Asia monsoon climate regions. However, our understanding of how much storages carbon in these ecosystems is limited. We studied carbon storage in three cool-temperate broad-leaved deciduous forests at Jirisan National Park, Korea. The biomass of trees in the three stands on an average was $112tC\;ha^{-1}$ and ranged from 107 to $119tC\;ha^{-1}$. The total amount of soil organic matter at a depth of 30 cm in the three stands on an average was $66tC\;ha^{-1}$. In addition, the total carbon stocks of biomass and soil was approximately $178tC\;ha^{-1}$, ranged from 167 to $184tC\;ha^{-1}$. Above values among three stands did not show the valuable difference at Jirisan National Park. The amounts of carbon storage in three ecosystems at Jirisan National Park, were higher than those of other studies significantly, except Seoraksan National Park.

Analysis of Land Cover Composition and Change Patterns in Islands, South Korea (우리나라 도서지역의 토지피복과 변화패턴 분석)

  • Kim, Jaebeom;Lee, Bora;Lee, Ho-Sang;Cho, Nanghyun;Park, Chanwoo;Lee, Kwang-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.190-200
    • /
    • 2022
  • In this study, the island's land-use and land-cover change (LULCC) is analyzed in South Korea using remotely sensed land cover data(Globeland 30) acquired from 2000 to 2020 to meet the requirement of providing practical information for forest management. Analysis of LULCC between the 2000 and 2020 images revealed that changes to agricultural land were the most common type of change (7.6% of pixels), followed by changes to the forest (5.7%). The islands forests maintain 157,246 ha (42.2% of the total island area). Land cover types that changed to the forest from grasslands were 262 islands, while reverse cases have occurred on 421 islands. These 683 islands have a possibility of transition and disturbance. The artificial land class was newly calculated in 22 islands. The forests, which account for 42.2% of the 22 island area, turned into grassland, and 27.8% of agricultural land and grassland turned into forests. The development of artificial land often affects developed areas and surrounding areas, resulting in deforestation, management of agriculture, and landscaping. This study can provide insights concerning the fundamental data for assessing ecological functions and constructing forest management plans in islands ecosystems.

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.289-296
    • /
    • 2003
  • The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

Plant Diversity and Density, Driving Forces of the Feeding Activity of Herbivores in a Temperate Forest of Southern South Korea (한국 남부 온대림 초식 곤충 식흔량에 영향을 주는 식물 다양성과 밀도)

  • Kim, Nang-Hee;Choi, Sei-Woong
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.322-330
    • /
    • 2018
  • Herbivory is a major functional component of forest ecosystems, and herbivorous insects comprise about 25% of all insect species. Increasing plant diversity is related to herbivore abundance and diversity, which affects the level of leaf damage caused by insects. This study was conducted to identify plant-related variables such as plant diversity and number of leaves and density-related variables, basal area, and diameter at breast height (DBH) in a temperate forest of southern South Korea. To assess the level of leaf damage caused by leaf chewing insects, we set up two 0.1 ha plots in a temperate deciduous forest on Mt. Jirisan National Park. Plant richness differed between two sites: 16 species in 14 families(site 1) and 19 species in 15 families (site 2). Fisher's alpha index based on plant species richness and abundance resulted in 4.41 (site 1) and 6.57 (site 2). However, the sum of basal area of each site was higher in site 1 ($6.6m^2$) than site 2 ($3.7m^2$). The total surveyed leaves at two sites were 3,832 and 4,691, respectively and the damage leaves were 1,544 and 2,136, respectively. The mean leaf damage level was 11.2% (${\pm}1.76%$) in two study sites: the leaf damage level of the site 1 (11.99%) was significantly higher than site 2 (10.59%). Stepwise regression analysis showed that species diversity and evenness were the significant variables for leaf damages by chewing herbivores. NMDS ordination also identified that high tree density and low species diversity were the significant variables. This suggested that the level of damage was significantly higher in plots with low plant diversity and high tree density. In the future, we will investigate other guilds of herbivores such as sap-suckers, miners and gallers in temperate deciduous forests.

Production of Mass and Nutrient Content of Decaying Boles in Mature Deciduous Forest in Kwangnung Experimental Forest Station, Korea

  • You, Young-Han;Kim, Joon-Ho
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.127-131
    • /
    • 2002
  • In order to elucidate the characteristics of standing crop biomass, production and nutrient content of dead bole in mature ecosystem, we surveyed the dynamics of decaying bole of old-aged deciduous forest in 1993 and 2002 in Kwangnung Experimental Forest Station. In addition, we and estimated annual bole production, water content, wood density and nutrient content and compared the results with that of temperate ecosystem. Total dead wood biomass was estimated to be 5.6ton/ha in 1993 and 17.6ton/ha in 2002. Standing dead tree accounted for a total of 1.1ton/ha in 1993 and 4.8ton/ha in 2002, which was 20% and 27% of the sum of dead bole mass in 1993 and 2002, respectively. Annual production of bole biomass was 1.3 ton/ha/yr. These values fall into the low range of dead wood biomass for the mature temperate ecosystems. Tree species composing standing bole was mainly Quercus and Carpinus trees. This bole species composition resembles alive species composition of this forest. Water content of bole increased as positive logarithmically, but wood density of bole decreased as negative exponentially along with the progress of decay. N, P, Ca and Mg concentrations in decaying boles generally increased with decay, except for K. Annual nutrient input via dead bole is 1.6kg/ha/yr for N, 0.04 kg/ha/yr for P. 1.0 kg/ha/yr for K, 1.7kg/ha/yr for Ca and 0.3 kg/ha/yr for Mg, respectively.

  • PDF

Production of Mass and Nutrient Content of Decaying Boles in Mature Deciduous Forest in Kwangnung Experimental Forest Station, Korea

  • You, Young-Han;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.261-265
    • /
    • 2002
  • In order to elucidate the characteristics of standing crop biomass, production and nutrient content of dead bole in mature ecosystem, we surveyed the dynamics of decaying bole of old-aged deciduous forest in 1993 and 2002 in Kwangnung Experimetal Forest Station. In addition, we and estimated annual bole production, water content, wood density and nutrient content and compared the results with that of temperate ecosystem. Total dead wood biomass was estimated to be 5.6ton/ha in 1993 and 17.6 ton/ha in 2002. Standing dead tree accounted for a total of 1.1 ton/ha in 1993 and 4.8 ton/ha in 2002, which was 20% and 27$\%$ of the sum of dead bole mass in 1993 and 2002, respectively. Annual production of bole biomass was 1.3 ton/ha/yr. These values fall into the low range of dead wood biomass for the mature temperate ecosystems. Tree species composing standing bole was mainly Quercus and Carpinus trees. This bole species composition resembles alive species composition of this forest. Water content of bole increased as positive logarithmically, but wood density of bole decreased as negative exponentially along with the progress of decay. N, P, Ca and Mg concentrations in decaying boles generally increased with decay, except for K. Annual nutrient input via dead bole is 1.6 kg/ha/yr for N, 0.04 kg/ha/yr for P, 1.0 kg/ha/yr for K, 1.7 kg/ha/yr for Ca and 0.3 kg/ha/yr for Mg, respectively.

Relationships Between the Spatial Distribution of Vegetation and Microenviromnent in a Temperate Hardwood Forest in Mt. Jrnbong Biosphere Reserve Area, Korea (점봉산 생물권 보전지역내 온대낙엽수림에서 미소환경요인과 식생요인의 공간분포와 상관 분석)

  • Lee, Kyu-Song;Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.23 no.3
    • /
    • pp.241-253
    • /
    • 2000
  • The degree to which microenvironmental factors are linked to spatial patterns of vegetational factors within ecosystems has important consequences for our understanding of how ecosytems are structured and for conservation of rare species in ecosystems. We studied this relationships between the spatial patterns of microenvironmental factors and vegetational factors in temperate hardwood forest in Mt. Jumbong Biological Reserve Area, Korea. To do this, environmental and vegetational factors from 196 micropoints in a 0.49 ha plot were investigated. Most of all environmental factors and vegetational factors showed the variations among micropoints. Microtopographic factors, litter depth, soil moisture content and relative light intensity at this site were spatially dependent at a scale of 14∼62 m. Coverage of tree and shrub layer and species diversity of herb layer in autumn were spatially dependent at a scale of < 15 m. Species richness and species diversity of herb layer in spring and species richness of herb layer in autumn were spatially dependent at a scale of 28∼48 m. Multiple regression analysis showed that spatial patterns of species richness and species diversity of herb layer in spring and autumn were affected by litter depth, slope, subtree layer, shrub, Sasa borealis etc. The best predictor for the spatial patterns of species richness and species diversity of herb layer at this site was the spatial pattern of litter depth. Species richness and species diversity of herb layer showed strongly negative correlation with litter depth. We estimate that the spatial pattern of litter depth at this site were affected by direction of wind, microtopography and spatial pattern of shrub layer.

  • PDF

Lessons from FIFE on Scaling of Surface Fluxes at Gwangneung Forest Site (광릉 산림지의 지표 플럭스 스케일링에 관한 FIFE로부터의 교훈)

  • Hong Jinkyu;Lee Dongho;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.4-14
    • /
    • 2005
  • CarboKorea and HydroKorea are the domestic projects aiming to improve our understanding of carbon and water cycles in a typical Korean forest located in a complex terrain with a watershed connected to large rivers. The ultimate goal is to provide a nowcasting of these cycles for the whole Peninsula. The basic strategy to achieve such goal is through the inter- and multi-disciplinary studies that synthesize the in-situ field observation, modeling and remote sensing technology. The challenge is the fact that natural ecosystems are nonlinear and heterogeneous with a wide range of spatio-temporal scales causing the variations of mass and energy exchanges from a leaf to landscape scales. Our paradigm now shifts from temporal variation at a point to spatial patterns and from spatial homogeneity to complexity of water and carbon at multiple scales. Yet, a large portion of our knowledge about land-atmosphere interactions has been established based on tower observations, indicating that the development of scaling logics holds the key to the success of CarboKorea and HydroKorea. Here, we review the pioneering work of FIFE (First ISLSCP Field Experiment) on scaling issues in a temperate grassland and discuss the lessons from it for the application to Gwangneung forest site.

Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition (흰개미가 생태계 탄소 순환에 미치는 영향: 고사목 분해를 중심으로)

  • Kim, Seongjun;Lee, Jongyeol;Han, Seung Hyun;Chang, Hanna;Lee, Sohye;Yun, Hyeon Min;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Globally, there are more than 2600 species of termites which adapted plenty of terrestrial ecosystems by various strategies such as making termite nest and society. Various studies were recently carried out on termites because they play significant roles in the context of carbon (C) cycle of terrestrial ecosystems. According to the results of previous studies, termite activities influenced the amount of soil organic C, methane emission, and organic matter decomposition. Termite nests, where termite biomass was concentrated, exhibited 1.8 times higher soil organic C concentration than reference soils, and emitted $0.0-6.0kg\;ha^{-1}year^{-1}$ of methane in tropical forests and savannas. Feeding activity of termites, in addition, accelerated coarse woody debris (CWD) decomposition by increasing the surface area to volume ratio of CWD. Especially, CWD decomposition induced by the Rhinotermitidae family appeared to be significant for the C cycle in temperate forests. However, more studies should be conducted on termite-induced CWD decomposition in temperate forests because few studies have dealt with it. The termite-induced CWD decomposition could be measured by preparing disc-shaped CWD samples, excluding access of termites to the CWD samples, and comparing the decomposition rate of the CWD samples with and without the termite exclusion treatment. Studies on the termite-induced CWD decomposition would contribute to further elucidation of the C cycle in temperate forests.