DOI QR코드

DOI QR Code

Analysis of Land Cover Composition and Change Patterns in Islands, South Korea

우리나라 도서지역의 토지피복과 변화패턴 분석

  • Kim, Jaebeom (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Lee, Bora (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Lee, Ho-Sang (Global Forestry Division, National Institute of Forest Science) ;
  • Cho, Nanghyun (Department of Environmental Science, Kangwon National University) ;
  • Park, Chanwoo (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Lee, Kwang-Soo (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science)
  • 김재범 (국립산림과학원 난대.아열대산림연구소) ;
  • 이보라 (국립산림과학원 난대.아열대산림연구소) ;
  • 이호상 (국립산림과학원 국제산림연구과) ;
  • 조낭현 (강원대학교 자연과학대학 환경과학과) ;
  • 박찬우 (국립산림과학원 난대.아열대산림연구소) ;
  • 이광수 (국립산림과학원 난대.아열대산림연구소)
  • Received : 2022.04.20
  • Accepted : 2022.09.29
  • Published : 2022.09.30

Abstract

In this study, the island's land-use and land-cover change (LULCC) is analyzed in South Korea using remotely sensed land cover data(Globeland 30) acquired from 2000 to 2020 to meet the requirement of providing practical information for forest management. Analysis of LULCC between the 2000 and 2020 images revealed that changes to agricultural land were the most common type of change (7.6% of pixels), followed by changes to the forest (5.7%). The islands forests maintain 157,246 ha (42.2% of the total island area). Land cover types that changed to the forest from grasslands were 262 islands, while reverse cases have occurred on 421 islands. These 683 islands have a possibility of transition and disturbance. The artificial land class was newly calculated in 22 islands. The forests, which account for 42.2% of the 22 island area, turned into grassland, and 27.8% of agricultural land and grassland turned into forests. The development of artificial land often affects developed areas and surrounding areas, resulting in deforestation, management of agriculture, and landscaping. This study can provide insights concerning the fundamental data for assessing ecological functions and constructing forest management plans in islands ecosystems.

본 연구는 도서에 대한 휴양과 안보 등 도서산림기능 발굴 및 지속적인 유지보전을 위하여 남한지역도서의 2000년과 2020년의 Globeland30 토지피복자료 분석을 통해 도서지역 토지피복의 구성 및 변화형태를 추적하고 도서산림의 이해를 위한 공간정보를 제공하고자 했다. 각 년도 별 토지피복분포와 격자 기반의 토지피복변화 분석을 수행했고 그 결과, 2000년 대비 2020년에는 농경지와 초지가 각각 7.6%, 1.7% 감소한 반면 산림과 인공지가 각각 5.7%, 3.2% 증가했고 도서산림은 20년 동안 전체 도서면적의 42.2% 인 157,246 ha가 유지되었다. 또한 농경지와 인공지가 존재하지 않는 도서 중 1 ha 이상 초지가 산림으로 변하는 262 개 도서와 산림이 초지로 변하는 421 개 도서를 관측하여 천이와 교란에 대한 잠재적 정보를 갖는 683 개 도서를 확인했다. 인공지의 유입이 확인된 22개 도서에서는 주로 농경지가 인공지로 전환되었다. 해당 도서 면적의 42.2%를 차지하는 산림이 초지로 변하고 27.8%의 농경지와 초지가 산림으로 변했다. 거주환경개선 및 사회기반시설 확충 등 인공지의 유입은 개발지역에 국한되지 않고 정주환경 개선을 위한 산림 파괴와 조경, 농경지의 개발 및 휴경화 등 주변부까지 토지피복의 변화를 수반하는 경우가 확인되었다. 해당 연구 결과는 추후 도서생태연구와 도서산림의 관리방안을 마련하기 위한 기초자료로 높은 활용도를 보일 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 산림청(국립산림과학원) 연구과제 "도서산림생태계의 지속적인 유지보전을 위한 관리 및 활용기술개발" 지원으로 이루어졌습니다.

References

  1. Amoo, A. E., and O. O. Babalola, 2019: Impact of land use on bacterial diversity and community structure in temperate pine and indigenous forest soils. Diversity 11(11), 217. https://doi.org/10.3390/d11110217
  2. Borges, P. A., P. Cardoso, H. Kreft, R. J. Whittaker, S. Fattorini, B. C. Emerson, A. Gil, R. G. Gillespie, T. J. Matthews, and A. Santos, 2018: Global island monitoring scheme (GIMS): A proposal for the long- term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation 27(10), 2567-2586. https://doi.org/10.1007/s10531-018-1553-7
  3. Boucher, O., J. Servonnat, A. L. Albright, O. Aumont, Y. Balkanski, V. Bastrikov, S. Bekki, R. Bonnet, S. Bony, and L. Bopp, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems 12(7), e2019MS002010. https://doi.org/10.1029/2019 MS002010
  4. Brown, J. A., J. L. Lockwood, J. D. Avery, J. Curtis Burkhalter, K. Aagaard, and K. H. Fenn, 2019: Evaluating the long-term effectiveness of terrestrial protected areas: A 40-year look at forest bird diversity. Biodiversity and Conservation 28(4), 811-826. https://doi.org/10.1007/s10531-018-01693-5
  5. Chen, J., J. Chen, A. Liao, X. Cao, L. Chen, X. Chen, C. He, G. Han, S. Peng, and M. Lu, 2015: Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing 103, 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
  6. Chi, Y., J. Sun, Z. Fu, and Z. Xie, 2019: Spatial pattern of plant diversity in a group of uninhabited islands from the perspectives of island and site scales. Science of the Total Environment 664, 334-346. https://doi.org/10.1016/j.scitotenv.2019.01.352
  7. Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N. D. Burgess, E. Wikramanayake, N. Hahn, S. Palminteri, P. Hedao, and R. Noss, 2017: An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67(6), 534-545. https://doi.org/10.1093/biosci/bix014
  8. Estrella, E. H., A. Stoeth, N. Krakauer, and N. Devineni, 2021: Quantifying vegetation response to environmental changes on the galapagos islands, ecuador using the normalized difference vegetation index (NDVI). Environmental Research Communications 3(6), 065003. https://doi.org/10.1088/2515-7620/ac0bd1
  9. Freed, L. A., R. L. Cann, M. L. Goff, W. A. Kuntz, and G. R. Bodner, 2005: Increase in avian malaria at upper elevation in hawai'i. The Condor 107(4), 753-764. https://doi.org/10.1093/condor/107.4.753
  10. Groninger, J., J. Skousen, P. Angel, C. Barton, J. Burger, and C. Zipper, 2007: Mine Reclamation Practices to Enhance Forest Development through Natural Succession. USDOI Office of Surface Mining. Forest Reclamation Advisory no.5.
  11. Han, M., G. Chen, and M. Dunford, 2019: Land use balance for urban economy: A multi-scale and multi- type perspective. Land use Policy 83, 323-333. https://doi.org/10.1016/j.landusepol.2019.01.020
  12. IPCC (Intergovernmental Panel on Climate Change), 2007: Small Islands. In Climate change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M. L., O. Canziani, J. Palutikof, P. Van der Linden, and C. Hanson (Eds.)]. Cambridge University Press., 700pp
  13. IPCC (Intergovernmental Panel on Climate Change), 2021: Atlas. In Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson- Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Eds.)]. Cambridge University Press. In Press., 96pp
  14. IPCC (Intergovernmental Panel on Climate Change), 2022: Small Islands. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Portner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegria, M. Craig, S. Langsdorf, S. Loschke, V. Moller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press., 3-23.
  15. Irons, J. R., J. L. Dwyer, and J. A. Barsi, 2012: The next landsat satellite: The landsat data continuity mission. Remote Sensing of Environment 122, 11-21. https://doi.org/10.1016/j.rse.2011.08.026
  16. Izquierdo, A. E., H. R. Grau, C. J. Navarro, E. Casagranda, M. C. Castilla, and A. Grau, 2018: Highlands in transition: Urbanization, pastoralism, mining, tourism, and wildlife in the argentinian puna. Mountain Research and Development 38(4), 390-400. https://doi.org/10.1659/MRD-JOURNAL-D-17-00075.1
  17. Kim, H. H., K. Mizuno, H. S. Lee, J. G. Koo, and W. S. Kong, 2021: Distribution of indicator plant of climate change in major islands of the Korean peninsula. Journal of Environmental Science International 30(1), 29-43. https://doi.org/10.5322/JESI.2021.30.1.29
  18. Lawrence, D. M., R. A. Fisher, C. D. Koven, K. W. Oleson, S. C. Swenson, G. Bonan, N. Collier, B. Ghimire, L. van Kampenhout, and D. Kennedy, 2019: The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems 11(12), 4245-4287. https://doi.org/10.1029/2018MS001583
  19. Lindenmayer, D., J. Franklin, and J. Fischer, 2006: General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation 131(3), 433-445. https://doi.org/10.1016/j.biocon.2006.02.019
  20. Mahmoud, S. H., and T. Y. Gan, 2018: Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Science of the Total Environment 633, 1329-1344. https://doi.org/10.1016/j.scitotenv.2018.03.290
  21. Marques, A., I. S. Martins, T. Kastner, C. Plutzar, M. C. Theurl, N. Eisenmenger, M. A. Huijbregts, R. Wood, K. Stadler, and M. Bruckner, 2019: Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution 3(4), 628-637. https://doi.org/10.1038/s41559-019-0824-3
  22. Mildrexler, D. J., M. Zhao, and S. W. Running, 2009: Testing a MODIS global disturbance index across north america. Remote Sensing of Environment 113(10), 2103-2117. https://doi.org/10.1016/j.rse.2009.05.016
  23. Narantsetseg, A., S. Kang, and D. Ko, 2018: Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of mongolia. Journal of Ecology and Environment 42(1), 1-8. https://doi.org/10.1186/s41610-017-0061-0
  24. Ning, J., J. Liu, W. Kuang, X. Xu, S. Zhang, C. Yan, R. Li, S. Wu, Y. Hu, and G. Du, 2018: Spatiotemporal patterns and characteristics of landuse change in china during 2010-2015. Journal of Geographical Sciences 28(5), 547-562. https://doi.org/10.1007/s11442-018-1490-0
  25. Oliveira, B. F., and B. R. Scheffers, 2019: Vertical stratification influences global patterns of biodiversity. Ecography 42(2), 249-249. https://doi.org/10.1111/ecog.03636
  26. Ostertag, R., W. L. Silver, and A. E. Lugo, 2005: Factors affecting mortality and resistance to damage following hurricanes in a rehabilitated subtropical moist forest. Biotropica: The Journal of Biology and Conservation 37(1), 16-24.
  27. Pena-Angulo, D., M. Khorchani, P. Errea, T. Lasanta, M. Martinez-Arnaiz, and E. Nadal-Romero, 2019: Factors explaining the diversity of land cover in abandoned fields in a mediterranean mountain area. Catena 181, 104064. https://doi.org/10.1016/j.catena.2019.05.010
  28. Perez-Cardenas, N., F. Mora, F. Arreola-Villa, V. Arroyo-Rodriguez, P. Balvanera, R. Flores-Casas, A. Navarrete-Pacheco, and M. A. Ortega-Huerta, 2021: Effects of landscape composition and site land-use intensity on secondary succession in a tropical dry forest. Forest Ecology and Management 482, 118818. https://doi.org/10.1016/j.foreco.2020.118818
  29. Pollierer, M. M., B. Klarner, D. Ott, C. Digel, R. B. Ehnes, B. Eitzinger, G. Erdmann, U. Brose, M. Maraun, and S. Scheu, 2021: Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia 196(1), 195-209. https://doi.org/10.1007/s00442-021-04910-1
  30. Prabakaran, N., S. Bayyana, K. Vetter, and H. Reuter, 2021: Mangrove recovery in the nicobar archipelago after the 2004 tsunami and coastal subsidence. Regional Environmental Change 21(3), 1-15. https://doi.org/10.1007/s10113-020-01737-z
  31. Raziq, A., A. Xu, Y. Li, and Q. Zhao, 2016: Monitoring of land use/land cover changes and urban sprawl in peshawar city in khyber pakhtunkhwa: An application of geo-information techniques using of multi-temporal satellite data. Journal of Remote Sensing & GIS 5, 174.
  32. Richter, R., J. Louis, and U. Muller-Wilm, 2012: Sentinel-2 MSI-Level 2A products algorithm theoretical basis document. European Space Agency, (Special Publication) 49(0), 1-72.
  33. Rivas-Torres, G. F., F. L. Benitez, D. Rueda, C. Sevilla, and C. F. Mena, 2018: A methodology for mapping native and invasive vegetation coverage in archipelagos: An example from the galapagos islands. Progress in Physical Geography: Earth and Environment 42(1), 83-111. https://doi.org/10.1177/0309133317752278
  34. Robin, M., J. Chapuis, and M. Lebouvier, 2011: Remote sensing of vegetation cover change in islands of the kerguelen archipelago. Polar Biology 34(11), 1689-1700. https://doi.org/10.1007/s00300-011-1069-z
  35. Sedlar, Z., A. Alegro, A. Radovic, A. Brigic, and V. Hrsak, 2017: Extreme land-cover and biodiversity change as an outcome of land abandonment on a mediterranean island (eastern adriatic). Plant Biosystems-an International Journal Dealing with all Aspects of Plant Biology 152(4), 728-737.
  36. Shi, X., S. Nie, W. Ju, and L. Yu, 2016: Climate effects of the GlobeLand30 land cover dataset on the beijing climate center climate model simulations. Science China Earth Sciences 59(9), 1754-1764. https://doi.org/10.1007/s11430-016-5320-x
  37. UN, 1982: United Nations Convention on the Law of the Sea, U.N.T.S. 1833, 397pp.
  38. Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. Morcette, 1997: Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing 35(3), 675-686. https://doi.org/10.1109/36.581987
  39. Wang, F., Z. Wang, and J. H. Lee, 2007: Acceleration of vegetation succession on eroded land by reforestation in a subtropical zone. Ecological Engineering 31(4), 232-241. https://doi.org/10.1016/j.ecoleng.2007.07.004
  40. Wang, L., C. Chen, F. Xie, Z. Hu, Z. Zhang, H. Chen, X. He, and Y. Chu, 2021: Estimation of the value of regional ecosystem services of an archipelago using satellite remote sensing technology: A case study of zhoushan archipelago, china. International Journal of Applied Earth Observation and Geoinformation 105, 102616. https://doi.org/10.1016/j.jag.2021.102616
  41. Wardle, D. A., O. Zackrisson, G. Hornberg, and C. Gallet, 1997: The influence of island area on ecosystem properties. Science 277(5330), 1296-1299. https://doi.org/10.1126/science.277.5330.1296
  42. Webster, P. J., G. J. Holland, J. A. Curry, and H. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742), 1844-1846. https://doi.org/10.1126/science.1116448
  43. Weigelt, P., W. Jetz, and H. Kreft, 2013: Bioclimatic and physical characterization of the world's islands. Proceedings of the National Academy of Sciences 110(38), 15307-15312. https://doi.org/10.1073/pnas.1306309110
  44. Xu, X., G. Jia, X. Zhang, W. J. Riley, and Y. Xue, 2020: Climate regime shift and forest loss amplify fire in amazonian forests. Global Change Biology 26(10), 5874-5885. https://doi.org/10.1111/gcb.15279
  45. 국토교통부, 2022: http://openapi.nsdi.go.kr/nsdi/eios/ServiceDetail.do?svcSe=F&svcId=F016&provOrg=NIDO
  46. 기상청(국가태풍센터), 2011: 태풍백서. 기상청, 225pp.
  47. 해양수산부, 2020: http://uii.mof.go.kr/UII/mn/mng_card/stat.do
  48. 행정안전부, 2021: https://www.data.go.kr/data/15042646/fileData.do