Browse > Article
http://dx.doi.org/10.5141/JEFB.2003.26.5.289

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan  

Lee, Mi-Sun (Center for Global Environmental Research, National Institute for Environmental Studies)
Publication Information
The Korean Journal of Ecology / v.26, no.5, 2003 , pp. 289-296 More about this Journal
Abstract
The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.
Keywords
Carbon; Ecological process-based approach; Forest ecosystem; NEP; Root respiration; Soil respiration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Norman, J.M., C.J. Kucharik, S.T. Gower, D.D. Baldocchi, P.M. Crill, M. Rayment, K. Savage and R.G. Stiegl. 1997. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J. Geophys. Res. 102: 28771-28777.   DOI
2 Valentini, R., G. Matteucci, A.J. Dolman, E.D. Schulze, C. Rebmann, E.J. Moors, A. Granier, P. Gross, N.O. Jensen, K. Pilegaard, A. Lindroth, A. Grelle, C. Bernhofer, T. GrUnwald, M. Aubinet, R. Ceulemans, A.S. Kowalski, T. Vesala, U. Rannik, P. Berbigier, D. Loustau, J. Guomundsson, H. Thorgeirsson, A. Ibrom, K. Morgenstern, R. Clement, J. Moncrieff, L. Montagnani, S. Minerbi and P.G. Jarvis. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404: 861-865.   DOI   ScienceOn
3 Cropper, W.P., K.C. Ewel and J.W. Raich. 1985. The measurement of soil $CO_2$ evolution in situ. Pedobiologia 28: 35-40.
4 IPCC. 2001. Land use, land-use change, and forestry. In R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo and D.J. Dokken (eds.). A special report of the IPCC. Cambridge University Press, Cambridge, UK.
5 Luo, Y., R.B., Jackson C.B. Field and H.A. Mooney. 1996. Evaluated $CO_2$ increases belowground respiration in California grasslands. Oecologia 108: 130-137.   DOI
6 Malhi, Y., D.D. Baldocchi and P.G. Jarvis. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22: 715-740.   DOI   ScienceOn
7 Lee, M.S., K. Nakane, T. Nakatsubo, W. Mo and H. Koizumi. 2002. Effects of rainfall events on soil $CO_2$ flux in a cool-temperate deciduous broad-leaved forest. Ecol. Res. 17: 401-409.   DOI
8 Edwards, N.T. 1982. The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 23: 321-330.
9 Jenkinson, D.S., D.E. Adams and A. Wild. 1991. Model estimates of $CO_2$ emissions from soil in response to global warming. Nature 351: 304-306.   DOI
10 Hanson, P.J., S.D. Wullschleger, S.A. Bohlman and D.E. Todd 1993. Seasonal and topographic patterns of forest floor $CO_2$ efflux from an upland oak forest. Tree Physiol. 13: 1-15.   DOI   ScienceOn
11 Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi. 2003a. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 25: 5311-318.
12 Bacastow, R. and C.D. Keeling. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from A.D. 1700 to 2070 as deduced from a geochemical reservoir. In G.M. Woodwell and E.V. Pecan (eds.), Carbon and the biosphere. U.S. Dept. of Commerce, Springfield, Virginia. pp. 86-135.
13 Law, B.E., P.E. Thornton, J.I. Irvine, P.M. Anthoni and S. Van Tuyl. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol. 7: 755-777.   DOI   ScienceOn
14 Nakadai T., H. Koizumi, Y. Usami, M. Satoh and T. Oikawa. 1996. Examination of the method for measuring soil respiration in cultivated land: Effects of carbon dioxide concentration on soil respiration. Ecol. Res. 8: 65-71.   DOI
15 Martin, P.H, G-J. Nabuurs, M. Aubinet, T. Karjalainen, E.L. Vine, J. Kinsman and L.S. Heath. 2001. Carbon sinks in temperate forests. Ann. Rev. Energy Environ. 26: 435-465.   DOI
16 Fang, C. and J.B. Moncrieff. 1996. An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil. Func. Ecol. 10: 297-305.   DOI   ScienceOn
17 Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi. 2003b. Contribution of root respiration to total soil respiration in cool-temperate deciduous forest. ILEPS (Integrated Land Ecosystem-Atmosphere Process Study) In Report series in aerosol science, 62B: 228-233.
18 Witkamp, M. and M.L. Frank. 1969. Evolution of $CO_2$ from litter, humus and subsoil of a pine stand. Pedobiologia 9: 358-365.
19 Edwards, N.T. 1991. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytol. 118: 315-321.   DOI   ScienceOn
20 Nakane, K. 2001. Quantitative evaluation of atmospheric $CO_2$ sink into forest soils from the tropics to the boreal zone during the past three decades. Ecol. Res. 16: 671-685.   DOI
21 Koizumi, H.,T. Nakadai, Y. Usami, M. Satoh, M. Shiyomi and T. Oikawa. 1991. Effects of carbon dioxide concentration on microbial respiration in soil. Ecol. Res. 6: 227-232.   DOI
22 Rustad, L.E., T.G. Huntington and R.D. Boone. 2000. Controls on soil respiration: Implications for climate change. Biogeochemistry. 48: 1-6.   DOI   ScienceOn
23 Mariko, S., N. Nishimura, W. Mo, Y. Matsui, M. Yokozawa, S. Sekikawa and H. Koizumi. 2000. Measurement of $CO_2$ fluxes from soil and snow surfaces with open dynamic chamber technique. Environ. Sci. 13: 69-74.
24 Koizumi, H. 2001. Carbon cycling in croplands. In M. Shiyomi and H. Koizumi (eds.). Structure and function in agroecosystem design and management CRC Press, Florida, U.S. pp. 207-226.
25 Nay, S.M., K.G. Mattson and B.T. Bormann. 1994. Biases of chamber methods for measuring soil $CO_2$ efflux demonstrated with a laboratory apparatus. Ecology 75: 2460-2463.   DOI   ScienceOn
26 Hanson, P.J., N.T. Edwards, C.T. Graten and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146.   DOI   ScienceOn
27 Edwards, N.T. 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Amer. J. 39: 361-365.   DOI
28 Ewel, K.C., W.P. Jr. Cropper and H.L. Gholz. 1987. Soil $CO_2$ evolution in Florida slash plantations. II. Importance of root respiration. Can. J. For. Res. 17: 330-333.   DOI
29 Raich, J.W. and W.H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81-99.
30 de Jong, E. and J.V. Shappert. 1972. Calculation of soil respiration and activity from $CO_2$ profiles in the soil. Soil Sci. 113: 328-333.   DOI
31 Britta, W. and A. Li. 2003. A calibration system for soil carbon dioxide-efflux measurement chambers: Description and application. Soil Sci. Soc. Amer. J. 67: 327-334.   DOI   ScienceOn
32 Woodwell, G.M., J.E. Hobbie, R.A. Hunghton, J.M. Melillo and B. Moore. 1983. Global deforestation: Contribution to atmospheric carbon dioxide. Science 222: 1081-1086.   DOI   ScienceOn
33 Ryan, M.G., R.M. Hubbard, S. Pongracic, R.J. Raison and R.E. McMurtrie. 1996. Foliage, fine-root, wood-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 16: 333-343.   DOI   ScienceOn
34 Bekku, Y., H. Koizumi, T. Oikawa and I. Iwaki. 1997. Examination of four methods for measuring soil respiration. Appl. Soil Ecol. 5: 247-254.   DOI   ScienceOn
35 Francey, R.J., P.P. Tans, C.E. Allison, I.G. Enting, J.W.C. White and M. Trolier. 1995. Changes in oceanic an terrestrial carbon uptake since 1982. Nature 373: 326-330.   DOI   ScienceOn
36 Saxe, H., M.G.R. Cannell, O.Johnsen, M.G. Ryan and G. Vourlitis. 2001. Tree and forest functioning in response to global warming. New Phytol. 149: 369-400.
37 McGuire, A.D., J.M. Melillo, D.W. Kicklighter and L.A. Joyce. 1995. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeochemistry. 22: 785-796.
38 Oechel, W.E., G.L. Vourlitis, S.J. Hastings and S.A. Bochkarev. 1995. Change in arctic $CO_2$ flux over two decades: Effects of climate change at Barrow Alaska. Ecol. App. 5: 846-855.   DOI   ScienceOn
39 Rochette, P., B. Ellert, E.G. Gregorich, R.L. Desjardins, E. Pattey, R. Lessard and B.G. Johnson. 1997. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J. Soil Sci. 77: 195-203.   DOI   ScienceOn
40 Norman, J.M., R. Garcia and S.B. Verma. 1992. Soil surface $CO_2$ fluxes and the carbon budget of a grassland. J. Geophy. Res. 97: 18,845-18,853.   DOI
41 Edwards, N.T. and W.F. Harris.1977. Carbon in a mixed deciduous forest floor. Ecology 58: 431-437.   DOI   ScienceOn
42 Jensen, L.S., T. Mueller, K.R. Tate, D.J. Ross, J. Magid and L.E. Nielsen. 1996. The soil surface $CO_2$ flux as an index of soil respiration in site: A comparison of two chamber methods. Soil Biol. Biochem. 28: 1297-1306.   DOI   ScienceOn
43 Baldocchi, D.D. and T.P. Meyers. 1991. Trace gas exchange above the floor of a deciduous forest 1. Evaporation and $CO_2$ flux. J. Geophys. Res. 96: 7271-7285.   DOI
44 Gupta, S.R. and J.S. Singh. 1981. Soil respiration in a tropical grassland. Soil Biol. Biochem. 13: 261-268.   DOI   ScienceOn
45 Janssens, I.A., A.S. Kowalski, B. Longdoz and R. Ceulemans. 2000. Assessing forest soil $CO_2$ efflux: an in situ comparison of four techniques. Tree Physiol. 20: 23-32.   DOI   ScienceOn
46 Lund, C.P., W.J. Riley, L.L. Pierce and C.B. Field. 1999. The effects of chamber pressurization on soil-surface $CO_2$ flux and the implications for NEE measurements under evaluated $CO_2$. Global Change Biol. 5: 269-281.   DOI   ScienceOn
47 Townsend, A.R., P.M. Vitousek and E.A. Holland. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic Change 22: 293-303.   DOI
48 Xu, M. and Y. Qi. 2001. Soil-surface $CO_2$ efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol. 7: 667-677.   DOI   ScienceOn
49 Yamamoto, S., S. Murayama, N. Saigusa and H. Kondo. 1999. Seasonal and inter-annual variation of $CO_2$ flux between a temperate forest and the atmosphere in Japan. Tellus 51B: 402-413.
50 Rochette, P. and L.B. Flanagan. 1997. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Amer. J. 61: 466-474.   DOI   ScienceOn
51 Tans, P.P., I.Y. Fung and T. Takahashi. 1990. Observational constrains on the global $CO_2$ budget. Science 247: 1431-1438   DOI   ScienceOn
52 Nakane, K. 1975. Dynamics of soil organic matter in different parts on a slope under evergreen oak forest. Jpn. J. Ecol. 25: 206-216 (in Japanese with English summary).
53 Rochette, P., E.G. Gregorich and R.L. Desjardins. 1992. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Can. J. Soil Sci. 72: 605-609.   DOI
54 Bowden, R.D., M.N. Kathleen and M.R. Gina. 1998. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 30: 1591-1597.   DOI   ScienceOn
55 Longdoz, B., M. Yearnaux and M. Aubinet. 2000. Soil $CO_2$ efflux measurements in a mixed forest: Impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol. 5: 269-281.   DOI   ScienceOn
56 Rochette, P., L.B. Flanagan and E.G. Gregorich. 1999. Separating soil respiration into plant and soil components using analysis of natural abundance of arbon-13. Soil Sci. Soc. Amer. J. 63: 1207-1213.   DOI
57 Schimel, D.S., B.H. Braswell, B.A. Holland, R. McKeown, D.S. Ojima, T.H. Painter, W.J. Parton and A.R. Townsend. 1994. Climatic, edaphic and biotic controls over the storage and turnover of carbon in soils. Global Biogeochem. 8: 279-293.   DOI
58 Bachelet, D., R.P. Neilson, J.M. Lenihan and R.J. Drapek. 2001. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4: 164-185.   DOI
59 Randerson, J.T., M.V. Thompson, I.Y. Fung, T. Conway and C.B. Field. 1997. The contribution of terrestrial sources and sinks to tends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycl. 11: 535-560.   DOI   ScienceOn
60 Kirita, H. 1971. Re-examination of the absorption method of measuring soil respiration under field conditions IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Jpn. J. Ecol. 21: 119-127 (in Japanese, with English summary).
61 Bowden R.D., R.D. Boone, J.M. Melillo and J.B. Garrison. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a mixed hardwood forest. Can. J. For. Res. 23: 1402-1407.   DOI
62 Singh, J.S. and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Botan. Rev. 43: 449-528.   DOI
63 Nakane K, T. Kohno and T. Horikoshi. 1996. Root respiration before and just after clear-felling in a mature deciduous, broad-leaved forest. Ecol. Res. 11, 111-119.   DOI
64 Post, W.M., T.H. Peng, W.R. Emanuel, A.W. King, V.H. Dale and D.L. De Angelis. 1990. The global carbon cycle. Amer. Sci. 78: 310-326.