• 제목/요약/키워드: technology base

검색결과 5,122건 처리시간 0.036초

연삭 휠 형상 복합가공시스템의 구조 안전성에 관한 연구 (A Study on Structural Safety of Integrated Machine for Grinding Wheel Forming)

  • 이원석;안범상;김진현;이종찬;우봉근;이영식
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.84-88
    • /
    • 2016
  • This study evaluated the structural safety of a heavy-duty integrated machine for grinding wheel forming. Structural analysis was performed to evaluate the structural safety of the base. The base was designed by dividing the single base and detachable base. The analysis conditions were applied to the own weight and the load of component parts. From the structural analysis results, although the stress of the detachable base was decreased, the amount of deformation was increased. If the deformation of the detachable base decreases, it is expected to be safer than the single base.

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

대체 신기법을 적용한 구치부 교의치 pontic ridge lap 제작방법 (Applying the New Technology for Making Pontic Ridge Lap in Posterior Bridge Restoration)

  • 김욱태
    • 구강회복응용과학지
    • /
    • 제29권3호
    • /
    • pp.308-316
    • /
    • 2013
  • 구강점막의 건강을 지속적으로 유지, 보지 및 치간유두를 보존시켜 치간공극의 발생을 최소화하고, 심미적이며, 발음에도 이상이 없는 최종보철물을 제작과정에서 교의치 pontic base 하방에 염증의 발생을 방지하고, self-cleasing이 될 수 있는 구치부 교의치 pontic ridge lap 제작방법을 연구하였다. 교의치 pontic base 하방에 염증의 발생을 방지하고, self-cleasing이 될 수 있는 제작기술을 부산, 경남지역의 치과 10군데를 대상으로 적용하였다. 구치부 3unit 교의치 pontic base를 제작할 때 대체 신기법을 적용한 ridge lap 형성방법을 제시하고, 임상검증을 수행하기 위해 기존의 통상적인 방법으로 제작된 것과 대체 신기법을 적용한 것을 비교분석 하였다. 염증, 기타 치주질환은 기존의 통상적인 방법으로 제작한 pontic base에서 9.6%, 대체 신기법을 적용한 방법으로 제작된 것은 0.3%이 나타났다. 음식물 잔류에서는 통상적인 방법은 100%, 대체 신기법을 적용한 방법 9.1%으로 유이한 차이를 보여지만, 가글 후의 검사 결과는 대체 신기법을 적용한 방법이 0.8%로 낮은 결과를 얻었다. 그리고 self-cleasing면에서 통상적인 방법으로 제작한 pontic base에서 9.0%, 대체 신기법을 적용한 방법 0.8%으로 나타났다.

위치결정 스테이지 베이스 진동 모델링 및 저감기법 개발 (Modeling and Countermeasure for Positioning Stage Base Vibration)

  • 박아영;임재곤;홍성욱
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.476-484
    • /
    • 2010
  • Precise positioning stages are often employed for precise machinery. For the purpose of vibration isolation, these precise positioning stages are mounted on a heavy base structure which is supported by compliant springs. Then the base structure is subjected to residual vibration due to the reactive force and vertical moving load induced by the stage motion. This paper investigates the vibration behavior of a positioning stage base and the associated vibration suppression technique. A dynamic model is developed to investigate the base vibration due to the reactive force and moving load effects by the moving stage. An input shaping technique is also developed to suppress the residual vibrations in base structures. Simulations and experiments show that the developed dynamic model adequately represents the base vibration and that the proposed input shaping technique effectively removes the residual vibrations from the positioning stage base.

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion

  • Zhang, Yunlei;Jin, Pei;Meng, Minjia;Gao, Lin;Liu, Meng;Yan, Yongsheng
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850132.1-1850132.14
    • /
    • 2018
  • The direct synthesis of metal-organic frameworks (MOFs) with acidic and basic active sites is challenging due to the introduction of functional groups by post-functionalization method often jeopardize the framework integrity. Herein, we report the direct synthesis of acid-base bifunctional MOFs with tuning acid-base strength. Employing modulated hydrothermal (MHT) approach, microporous MOFs named $UiO-66-NH_2$ was prepared. Through the ring-opening reaction of 1,3-propanesultone with amino group, $UiO-66-NH_2-SO_3H-type$ catalysts can be obtained. The synthesized catalysts were well characterized and their catalytic performances were evaluated in one-pot glucose to 5-HMF conversion. Results revealed the acid-base bi-functional catalyst possessed high activity and excellent stability. This work provides a general and economically viable approach for the large-scale synthesis of acid-base bi-functional MOFs for their potential use in catalysis field.

의치상(義齒床) 개선(改選)에 관한 연구(硏究) (A Study on the Improvement of Denture Base construction)

  • 신무학
    • 대한치과기공학회지
    • /
    • 제14권1호
    • /
    • pp.133-138
    • /
    • 1992
  • The base of a metal base denture that is made of acrylic resin base and metal in lined by soft liner named silicon rubber and its merits are as follows. 1. It has a good retention and fastness. 2. It has a good comfort and stability. 3. It is easy to mix various kinds of base materials. 4. It is easy to repair. 5. The pressure of bone and mucosal tissue is decreased and bite force is dispersed.

  • PDF

Effect of seismic pounding on buildings isolated by triple friction pendulum bearing

  • Amiri, Gholamreza Ghodrati;Shakouri, Ayoub;Veismoradi, Sajad;Namiranian, Pejman
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.35-45
    • /
    • 2017
  • The current paper investigates the effect of the seismic pounding of neighboring buildings on the response of structures isolated by Triple Friction Pendulum Bearing (TFPB). To this end, a symmetric three-dimensional single story building is modeled for analysis with two specified levels of top deck and base deck, to capture the seismic response of the base isolators and building's roof. Linear elastic springs with different level of gaps are employed to calculate the impact between the buildings. Nonlinear Dynamic Time History Analyses (NDTHA) are conducted for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are assumed for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift and top deck acceleration of the superstructure. The results also indicate the profound effect of the stiffness of the adjacent buildings on the value of the impact they impose to the superstructure. Also, in situations of potential pounding, the increment of the fundamental period of the TFPB base isolator could intensify the impact force up to nearly five-fold.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.