DOI QR코드

DOI QR Code

Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion

  • Zhang, Yunlei (Institute of Green Chemistry and Chemical Technology School of Chemistry and Chemical Engineering Jiangsu University) ;
  • Jin, Pei (Institute of Green Chemistry and Chemical Technology School of Chemistry and Chemical Engineering Jiangsu University) ;
  • Meng, Minjia (Institute of Green Chemistry and Chemical Technology School of Chemistry and Chemical Engineering Jiangsu University) ;
  • Gao, Lin (Key Laboratory of Preparation and Applications of Environmental Friendly Materials Jilin Normal University, Ministry of Education) ;
  • Liu, Meng (Institute of Green Chemistry and Chemical Technology School of Chemistry and Chemical Engineering Jiangsu University) ;
  • Yan, Yongsheng (Institute of Green Chemistry and Chemical Technology School of Chemistry and Chemical Engineering Jiangsu University)
  • Received : 2018.07.09
  • Accepted : 2018.10.11
  • Published : 2018.11.30

Abstract

The direct synthesis of metal-organic frameworks (MOFs) with acidic and basic active sites is challenging due to the introduction of functional groups by post-functionalization method often jeopardize the framework integrity. Herein, we report the direct synthesis of acid-base bifunctional MOFs with tuning acid-base strength. Employing modulated hydrothermal (MHT) approach, microporous MOFs named $UiO-66-NH_2$ was prepared. Through the ring-opening reaction of 1,3-propanesultone with amino group, $UiO-66-NH_2-SO_3H-type$ catalysts can be obtained. The synthesized catalysts were well characterized and their catalytic performances were evaluated in one-pot glucose to 5-HMF conversion. Results revealed the acid-base bi-functional catalyst possessed high activity and excellent stability. This work provides a general and economically viable approach for the large-scale synthesis of acid-base bi-functional MOFs for their potential use in catalysis field.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province

References

  1. J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem. Int. Ed. 46, 7164 (2007). https://doi.org/10.1002/anie.200604274
  2. F. Cao, T. J. Schwartz, D. J. McClelland, S. H. Krishna, J. A. Dumesic and G. H. Huber, Energy Environ. Sci. 8, 1808 (2015). https://doi.org/10.1039/C5EE00353A
  3. S. Dutta and K. C. W. Wu, Green Chem. 16, 4615 (2014). https://doi.org/10.1039/C4GC01405G
  4. R. J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres and J. G. de Vries, Chem. Rev. 113, 1499 (2013). https://doi.org/10.1021/cr300182k
  5. J. Z. Chen, K. G. Li, L. M. Chen, R. L. Liu, X. Huang and D. Q. Ye, Green Chem. 16, 2490 (2014). https://doi.org/10.1039/C3GC42414F
  6. W. H. Hsu, Y. Y. Lee, W. H. Peng and K. C. W. Wu, Catal. Today 174, 65 (2011). https://doi.org/10.1016/j.cattod.2011.03.020
  7. G. Y. Li, N. Li, Z. Q. Wang, C. Z. Li, A. Q. Wang, X. D. Wang, Y. Cong and T. Zhang, ChemSusChem 5, 1958 (2012). https://doi.org/10.1002/cssc.201200228
  8. L. Wang, H. Wang, F. J. Liu, A. M. Zheng, J. Zhang, Q. Sun, J. P. Lewis, L. F. Zhu, X. J. Meng and F. S. Xiao, ChemSusChem 7, 402 (2014). https://doi.org/10.1002/cssc.201301076
  9. Y. L. Zhang, Q. G. Xiong, Y. Chen, M. Liu, P. Jin, Y. S. Yan and J. M. Pan, Ind. Eng. Chem. Res. 57, 1968 (2018). https://doi.org/10.1021/acs.iecr.7b04671
  10. Y. L. Zhang, P. Jin, M. Liu, J. M. Pan, Y. S. Yan, Y. Chen and Q. G. Xiong, AIChE J. 63, 4920 (2017). https://doi.org/10.1002/aic.15841
  11. R. K. Zeidan and M. E. Davis, J. Catal. 247, 379 (2007). https://doi.org/10.1016/j.jcat.2007.02.005
  12. B. Voit, Angew. Chem. Int. Ed. 45, 4238 (2006). https://doi.org/10.1002/anie.200504353
  13. M. Filice and J. M. Palomo, ACS Catal. 4, 1588 (2014). https://doi.org/10.1021/cs401005y
  14. Y. L. Huang, S. Xu and V. S. Y. Lin, Angew. Chem. Int. Ed. 50, 661 (2011). https://doi.org/10.1002/anie.201004572
  15. F. Xue, Y. B. Zhang, F. W. Zhang, X. M. Ren and H. Q. Yang, ACS Appl. Mater. Interfaces 9, 8403 (2017). https://doi.org/10.1021/acsami.6b16605
  16. A. V. Biradar, V. S. Patil, P. Chandra, D. S. Doke and T. Asefa, Chem. Commun. 51, 8496 (2015). https://doi.org/10.1039/C5CC01694K
  17. Y. Yang, X. Liu, X. B. Li, J. Zhao, S. Y. Bai, J. Liu and Q. H. Yang, Angew. Chem. Int. Ed. 51, 9164 (2012). https://doi.org/10.1002/anie.201204829
  18. X. Wang, B. Y. Guan, Y. P. He, Y. Zhang, Y. Cao, Y. L. Liu, Z. A. Qiao and Q. S. Huo, ChemNanoMat 1, 562 (2015). https://doi.org/10.1002/cnma.201500128
  19. G. B. B. Varadwaj, S. Rana, K. Parida and B. B. Nayak, J. Mater. Chem. A 2, 7526 (2014). https://doi.org/10.1039/c4ta00042k
  20. E. Merino, E. Verde-Sesto, E. M. Maya, M. Iglesias, F. Sanchez and A. Corma, Chem. Mater. 25, 981 (2013). https://doi.org/10.1021/cm400123d
  21. H. Liu, F. G. Xi, W. Sun, N. N. Yang and E. Q. Gao, Inorg. Chem. 55, 5753 (2016). https://doi.org/10.1021/acs.inorgchem.6b01057
  22. A. Herbst and C. Janiak, CrystEngCommun 19, 4092 (2017). https://doi.org/10.1039/C6CE01782G
  23. H. C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev. 112, 673 (2012). https://doi.org/10.1021/cr300014x
  24. H. C. J. Zhou and S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014). https://doi.org/10.1039/C4CS90059F
  25. M. Zhao, S. Ou and C. D. Wu, Acc. Chem. Res. 47, 1199 (2014). https://doi.org/10.1021/ar400265x
  26. A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov and F. Verpoort, Chem. Soc. Rev. 44, 6804 (2015). https://doi.org/10.1039/C4CS00395K
  27. R. Oozeerally, D. L. Burnett, T. W. Chamberlain, R. I. Walton and V. Degirmenci, ChemCatChem 10, 706 (2018). https://doi.org/10.1002/cctc.201701825
  28. M. D. de Mello and M. Tsapatsis, ChemCatchem 10, 2417 (2018). https://doi.org/10.1002/cctc.201800371
  29. Q. Guo, L. M. Ren, P. Kumar, V. J. Cybulskis, K. A. Mkhoyan, M. E. Davis and M. Tsapatsis, Angew. Chem. Int. Ed. 57, 4926 (2018). https://doi.org/10.1002/anie.201712818
  30. Z. G. Hu, Y. W. Peng, Y. J. Gao, Y. H. Qian, S. M. Ying, D. Q. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. X. Wang, N. Yan and D. Zhao, Chem. Mater. 28, 2659 (2016). https://doi.org/10.1021/acs.chemmater.6b00139
  31. Y. M. Zhang, V. Degirmenci, C. Li and E. J. M. Hensen, ChemSusChem 4, 59 (2011). https://doi.org/10.1002/cssc.201000284
  32. J. Z. Chen, K. G. Li, L. M. Chen, R. L. Liu, X. Huang and D. Q. Ye, Green Chem. 16, 2490 (2014). https://doi.org/10.1039/C3GC42414F
  33. Z. G. Hu, A. Nalaparaju, Y. W. Peng, J. W. Jiang and D. Zhao, Inorg. Chem. 55, 1134 (2016). https://doi.org/10.1021/acs.inorgchem.5b02312
  34. Z. G. Hu, Y. W. Peng, Z. X. Kang, Y. H. Qian and D. Zhao, Inorg. Chem. 54, 4862 (2015). https://doi.org/10.1021/acs.inorgchem.5b00435
  35. R. Q. Fang, R. Luque and Y. W. Li, Green Chem. 19, 647 (2017). https://doi.org/10.1039/C6GC02018F
  36. L. Bromberg, X. Su and T. A. Hatton, Chem. Mater. 26, 6257 (2014). https://doi.org/10.1021/cm503098p
  37. A. Herbst and C. Janiak, New J. Chem. 40, 7958 (2016). https://doi.org/10.1039/C6NJ01399F
  38. Y. Su, G. G. Chang, Z. G. Zhang, H. B. Xing, B. G. Su, Q. W. Yang, Q. L. Ren, Y. W. Yang and Z. B. Bao, AIChE J. 62, 4403 (2016). https://doi.org/10.1002/aic.15356
  39. M. Yabushita, P. Li, T. Islamoglu, H. Kobayashi, A. Fukuoka, O. K. Farha and A. Katz, Ind. Eng. Chem. Res. 56, 7141 (2017). https://doi.org/10.1021/acs.iecr.7b01164
  40. G. Barin, V. Krungleviciute, O. Gutov, J. T. Hupp, T. Yildirim and O. K. Farha, Inorg. Chem. 53, 6914 (2014). https://doi.org/10.1021/ic500722n
  41. Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y. K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Ferey, Angew. Chem. Int. Ed. 47, 4144 (2008). https://doi.org/10.1002/anie.200705998
  42. O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, H. B. Albada, E. D. Bloch, B. Marler, Y. M. Wang, M. Muhler and R. A. Fischer, Angew. Chem. Int. Ed. 53, 7058 (2014). https://doi.org/10.1002/anie.201311128
  43. Y. L. Zhang, J. M. Pan, Y. T. Shen, W. D. Shi, C. B. Liu and L. B. Yu, ACS Sustain. Chem. Eng. 3, 871 (2015). https://doi.org/10.1021/sc5008412
  44. H. L. Wang, Q. Q. Kong, Y. X. Wang, T. S. Deng, C. M. Chen, X. L. Hou and Y. L. Zhu, ChemCatChem 6, 728 (2014). https://doi.org/10.1002/cctc.201301067
  45. Y. L. Zhang, Y. Chen, J. M. Pan, M. Liu, P. Jin and Y. S. Yan, Chem. Eng. J. 313, 1593 (2017). https://doi.org/10.1016/j.cej.2016.11.033
  46. F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Appl. Catal. B-Environ. 105, 171 (2011). https://doi.org/10.1016/j.apcatb.2011.04.009
  47. Y. L. Zhang, Y. T. Shen, Y. Chen, Y. S. Yan, J. M. Pan, Q. G. Xiong, W. D. Shi and L. B. Yu, Chem. Eng. J. 294, 222 (2016). https://doi.org/10.1016/j.cej.2016.02.092
  48. Y. L. Zhang, J. M. Pan, Y. Chen, W. D. Shi, Y. S. Yan and L. B. Yu, Chem. Eng. J. 283, 956 (2016). https://doi.org/10.1016/j.cej.2015.08.090