• Title/Summary/Keyword: tartrate-resistant acid phosphatase

Search Result 138, Processing Time 0.028 seconds

Osteoclast Differentiation of Polygoni Cuspidati Radix Extracts Effects and Mechanism of Inhibition Studies (호장근(虎杖根)의 파골세포 분화 억제 효과와 기전 연구)

  • Jang, Hee-Jae;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Objectives: This study was conducted to evaluate the inhibitory effect of polygoni cuspidati radix (PCR) extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of PCR extract in BMMs stimulated with RANKL. Tartrate resistant acid phosphatase (TRAP) staining, TRAP activity and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. actin ring formation were analysed to observe the effect of PCR extract. Results: PCR decreased the number of TRAP positive cells and TRAP activities in BMMs stimulated with RANKL and M-CSF. PCR restrained the formation of actin ring. PCR down regulated the induction of NFATc1, c-Fos, TRAP and OSCAR by RANKL. PCR inhibited NF-${\kappa}B$ activity by inducing degradation of $I{\kappa}B{\alpha}$. Conclusions: We suggest that PCR Extracts can be an effective therapeutic agent on osteoclast differentiation caused by diseases such as osteoporosis.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Effects of Extracts from Sarcocarp, Peels, and Seeds of Avocado on Osteoblast Differentiation and Osteoclast Formation (아보카도 과육, 과피 및 씨 추출물이 조골세포 분화 및 파골세포 형성에 미치는 영향)

  • Kim, Mi-Jin;Im, Nam-Kyung;Yu, Mi-Hee;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.919-927
    • /
    • 2011
  • Avocado (Persea americana Mill., Family Lauraceae) is an important subtropical crop in the Americas where it has been cultivated for several thousand years. To investigate the bioactivities of avocado, which acts on bone formation, we prepared methanol extracts from the sarcocarp, peels, and seeds of avocado. The methanol extracts of peels and seeds showed higher bone-forming activity than avocado sarcocarp extracts accompanied by MC3T3-E1 osteoblast proliferation and alkaline phosphatase (ALP) activity. Additionally, the extracts of sarcocarp and peel from avocado also decreased tartrate-resistant acid phosphatase (TRAP) activity against differentiation of osteoclasts, derived from mouse bone marrow macrophages. The hexane fraction from avocado peels showed strong bone-forming activity accompanied by osteoblast proliferation and ALP activity (170.7${\pm}$8.4%), and the ethyl acetate fraction from avocado peel decreased TRAP activity (5.2${\pm}$0.3%) and differentiated osteoclasts at 50 ${\mu}g$/mL. Therefore, avocado is expected to be a natural source for developing medicinal agents to prevent bone-related diseases, such as osteoporosis, by increasing osteoblast differentiation and reducing osteoclast activity.

Anti-osteoporotic Activity of Mixed Herbal Extract Involving Platycodon Grandiflorum Root in Osteoblastic MC3T3-E1 and Osteoclastic RAW 264.7 Cells (MC3T3-E1 조골세포주와 RAW 264.7 파골세포주에서 길경을 함유한 한약재 추출물의 항골다공증 효과)

  • Jung, Jae-In;Lee, Hyun-Sook;Kim, Hyung-Joon;Kim, Yong-Min;Kim, Soo-Hyun;Yoo, Dong-Jin;Kim, Eun-Ji
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.31 no.4
    • /
    • pp.1-15
    • /
    • 2018
  • Objectives: Osteoporosis is considered a serious human disease. We developed an extract of mixed herbs containing root of Platycodon grandiflorum (ExMH-PGR), which is expected to be effective in preventing or treating osteoporosis. The aim of this study was to investigate the anti-osteoporotic effect of ExMH-PGR in osteoblastic MC3T3-E1 cells and osteoclastic RAW 264.7 cells. Methods: To examine the anti-osteoporotic effect of ExMH-PGR, osteoblast and osteoclast differentiation were induced and cultured with various concentrations of ExMH-PGR. Alkaline phosphatase (ALP) activity, collagen synthesis, osteocalcin production, and mineralization in MC3T3-E1 cells were analyzed. Tartrate-resistant acid phosphatase (TRAP) activity and the formation of actin ring in RAW 264.7 cells were analyzed. Results: ExMH-PGR at concentration up to $25{\mu}g/mL$ significantly increased ALP activity, collagen synthesis, osteocalcin production, and mineralization in MC3T3-E1 cells. ExMH-PGR at 50 to $200{\mu}g/mL$ significantly inhibited TRAP activity and the formation of actin ring in RAW 264.7 cells. Conclusions: These results demonstrate that ExMH-PGR stimulates osteoblastic activities and inhibits osteoclastic activities in in vitro systems, suggesting that ExMH-PGR might be considered as an anti-osteoporotic candidate for treatment of osteoporosis disease.

Effect of Gallus gallus var. domesticus (Yeonsan ogolgye) Extracts on Osteoblast Differentiation and Osteoclast Formation (연산 오골계 물 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.322-329
    • /
    • 2015
  • The effects of water extracts of Gallus gallus var. domesticus (Yeonsan ogolgye, GD) on the activities of osteoblast differentiation and the restraint of osteoclast formation were investigated. The water extract of GD in the human osteoblast "MG-63" cell, was examined in relation to alkaline phosphatase (ALP) activity and alizarin red stains. In order to observe the effects of osteoclasts formation, we analyzed RAW 264.7 cell tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains. The ALP activity of the water extract of hen and cock flesh (3 years) were 133.8% and 129.6%, respectively. The ALP activity of flesh extracts was also higher than that of the skin extracts. Concerning the effects of age, the 3 years old flesh extracts had a higher activity than that of the one year old extracts. However the activity of the 3 years old skin extracts was lower than that of the one year old extracts. For gender conditions, the ALP activity of the hen extract was higher than that of the cock. The degree bone mineralization in the three years old hen flesh exhibited the highest rate, at 124.3%, amongst all the groups. The TRAP activity of the flesh extracts of the three years old cock revealed the lowest rate, at 31.8%, compared to the control. Our results demonstrate that the water extract of GD increases bone mineralization and osteoblast differentiation activity in MG-63 cells and enhances the inhibitory activity of bone-resorption in RAW 264.7 cells. In conclusion, the water extracts of GD seem to be effective in the prevention and treatment of bone related disorders.

BIOCHEMICAL CHARACTERIZATION OF EMBRYONIC CHICK CALVARIAL CELLS

  • Yu, Jae-Hyung;Kim, Jung-Kun;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.697-704
    • /
    • 1995
  • Chicken calvarial bone is known to contain various cell types, but their exact composition is unknown. By characterizing the chicken calvarial bone biochemically, it can be used to study biochemical, histochemical actions of bone cells in general. Calvaria of 18-day-old white leg horn embryo was aseptically dissected and bone cell populations were isolated by sequential enzymatic digestion. Histochemical study for osteoclast-like bone cell. population was performed with tartrate resistant acid phosphatase(TRAP) stain and for osteoblast-like bone cell population, alkaline phosphatase(ALP) stain was performed. Biochemical study for osteoblast-like bone cell population was performed using alkaline phosphatase(ALP) assay. Following conclusions were obtained from this study. 1. TRAP positive multi and mononuclear cells were mostly observed in group I and II, indicating that osteoclast-like bone cell population is mostly found in these groups. 2. All the cultured groups showed almost equal ALP activities and were positive for ALP stain, indicating that osteoblast-like bone cell population is evenly dispersed in all culture groups. 3. Experimental group treated with $1,25(OH)_{2}D_3$ showed increase in ALP activity in contrast to the control group, confirming previous studies that $1,25(OH)_{2}D_3$ increases ALP activities in in vitro bone cultures. 4. Results from von Kossa's stain indicated that in vitro bone formation had occured after 3 weeks of culture with beta-glycero phosphate.

  • PDF

Effect of Pyrroloquinoline Quinone on Osteoclast Generation and Activity (Pyrroloquinoline quinone이 파골세포의 생성 및 활성에 미치는 영향)

  • Ko, Seon-Yle;Han, Dong-Ho;Kim, Jung-Keun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.329-336
    • /
    • 2005
  • We examined the effect of PQQ, as a scavenger of superoxide, on osteoclast-like cell formation and on mature osteoclast function. To determine whether PQQ scavenges the superoxide, nitroblue tetrazolium (NBT) staining, which is a method to detect superoxide, was performed on HD-11 cells which are a chick myelomonocytic cell line having tartrate-resistant acid phosphatase (TRAP) activity in response to 1,25-dihydroxyvitamin $D_3\;[1,25(OH)_2D_3]$. Histochemical study of TRAP was also performed on HD-11 cells. PQQ inhibited the TRAP-positive multinucleated cell formation of chicken bone marrow cells was also examined. The addition of 20 ${\mu}M$ PQQ inhibited the formation of TRAP-positive multinucleated cell. When chicken osteoclasts were cultured on dentin slices, treatment of 20 ${\mu}M$ PQQ resulted in a significant decrease in dentin resorption by osteoclasts in terms of total resorption area and number of resorption pits. The present data suggest that PQQ, possibly as a scavenger of superoxide ion, inhibits the osteoclastic differentiation and bone resorption.

Extracts of Sorbus commixta and Geranium thunbergii inhibit Osteoclastogenesis and stimulate Chondrogenesis (마가목 및 현지초 추출물의 골손실 및 연골손상 억제효과)

  • Moon, Eun-Jung;Youn, You-Suk;Choi, Bo-Yun;Jeong, Hyun-Uk;Park, Ji-Ho;Oh, Myung-Sook;Soh, Yun-Jo;Kim, Sun-Yeou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3358-3365
    • /
    • 2010
  • This study was carried out to investigate the effect of Sorbus commixta (SC), Geranium thunbergii (GT) and their mixture (SC:GT=1:1, MIX) on inhibition of bone loss and chondral defect. To examine their activities, we measured the alkaline phosphatase (ALP) activity in human osteoblast-like MG-63 cells and performed tartrate-resistant acid phosphate (TRAP) staining in osteoclast differentiated from Raw264.7 cells. To investigate the influence on chondrocyte differentiation, we performed alcian-blue staining in chondrocyte differentiated from ATDC5 cells. All of SC, GT and MIX did not increase ALP activity in MG-63 cells. However, SC and mixture (SC:GT=1:1, MIX) significantly inhibited osteoclastic differentiation. And they also induced chondrocyte differentiation. These results suggest that SC and GT may have a potential for the treatment of bone loss and chondral defect by suppression of osteoclast differentiation and stimulation of chondrocyte differentiation. Therefore, clarification of their mechanisms and active components will be needed.

Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand

  • Park, Bobae;Yu, Sun Nyoung;Kim, Sang-Hun;Lee, Junwon;Choi, Sung Jong;Chang, Jeong Hyun;Yang, Eun Ju;Kim, Kwang-Youn;Ahn, Soon-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1017-1025
    • /
    • 2022
  • Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.

The effect of taurine and alendronate on the osteoclast differentiated by the sonicated extracts of Porphyromonas Gingivalis in vitro

  • Kim, Hyung-Su;Lee, Seung-Jong;Lee, Chan-Young;Kum, Kee-Yeon
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.566.2-566
    • /
    • 2001
  • The objective of this study was to investigate the ability of alendronate and taurine in inhibiting in vitro osteoclast differentiation induced by bacteria. Whole cell sonicates of P. gingivalis were used as an osteoclast-stimulating factor in a mouse coculture system and differentiated osteoclasts were confirmed by tartrate-resistant acid phosphatase (TRAP) staining. Alendronate at the concentrations of 10-7, 10-6, and 10-5 M, and taurine at the concentrations of 4mM, 8mM, and 12mM were used.(omitted)

  • PDF