• Title/Summary/Keyword: target water level

Search Result 240, Processing Time 0.026 seconds

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Development of an Integrated Evaluation Method for National Protected Areas Based on Aichi Biodiversity Target 11 (아이치 생물다양성 목표 11에 기초한 국가 보호지역의 통합 평가 체계 개발)

  • Hong, Jin-Pyo;Shim, Yun-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.83-94
    • /
    • 2018
  • This study presents an integrated evaluation method to assess the level of achievement of quantitative expansion goals and qualitative improvement goals based on the Aichi Biodiversity Target 11 for quantitatively expanding and qualitatively improving national protected areas. The quantitative evaluation indicators for national protected areas are the percentage of terrestrial and inland water areas protected and the percentage of marine and coastal areas protected. The quantitative evaluation indicators for national protected areas are selected as 6 indicators: 1) ecologically important areas, 2) ecological representativeness, 3) management effectiveness, 4) connectivity, 5) social equity and 6) integration. Ecologically important areas are an indicator which evaluates how many areas of particular importance for biodiversity and ecosystem services are included in national protected areas. Ecological representativeness is to assess how well national protected areas represent the ecosystem. Management effectiveness is an indicator which evaluates how effectively national protected areas are conserved and managed, and connectivity is an indicator to assess how well national protected areas are connected. Social equity is evaluating how equitably national protected areas are managed and the integration is assessing how much national protected areas are integrated into the wilder landscape and seascape. This study is significant in that it provides a perspective of qualitative improvement as well as quantitative expansion of national protected areas for biodiversity conservation through accurately understanding Aichi Biodiversity Target 11.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.

Controlled Release of Oxyfluorfen from the Variously Complexed Formulations IV. Effect of Water Level Depths on the Activity of Selected Formulations (수종(數種)의 결합제형(結合劑型)으로부터 Oxyfluorfen의 방출억제연구(放出抑制硏究) IV. 관개심(灌漑甚)에 따른 선발제형(選拔劑型) Oxyfluorfen의 약해(藥害).약효평가(藥效評價))

  • Guh, J.O.;Chon, S.U.;Kuk, Y.I.;Kwon, O.D.
    • Korean Journal of Weed Science
    • /
    • v.11 no.3
    • /
    • pp.159-166
    • /
    • 1991
  • Seven oxyfluorfen formulations were tested for control of 8 weed species and rice injury under four different water depths with various ages of rice seedlings. Among formulations tested, rice injury was slight by formulations of Elvan, Coal Slag, Chitosan and Bentonite B under 0 cm or shallow water depths, and by those of Elvan and Coal Slag under deep water conditions. Weed control was high by Bentonite A and B, and Chitosan, and was low by Elvan. Coal Slag and Sand coated oxyfluorfen, if the target weeds of oxyfluorfen are annual species, further development of Elvan, coal slag, chitosan and Bentonite A would be controlled to increase control efficacy or to decrease rice injury.

  • PDF

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

A Study on the Present Situations and Educational Needs of Agricultural Environment for Rural Changes Agents (농촌지도사들의 농업환경교육 실태와 환경교육 요구도 조사연구)

  • Kim, Soo-Wook
    • Journal of Agricultural Extension & Community Development
    • /
    • v.6 no.2
    • /
    • pp.85-103
    • /
    • 1999
  • The objectives of the study were to review the agricultural environment education program for nasal change agents, to find out their recognition on agricultural environment and to get sorn implications for better educational program of rural environment. The data were gathered from 177 rural change agents in 11 agricultural technology centers in Kyongi-Do province by mailing survey with questionnaire. The major findings of the study were ; (1) Agricultural environment education for rural extention workers initiated in 1996. From 1999 diversified programs were served for them. (2) Rural change agents perceived that water contamination and degradation of life environment were the most serious problem. (3) Educational program on organic farming should be prepared for farmers and rural changes agents. (4) Concrete educational programs for adequate use of agricultural chemicals should be prepared for farmers. (5) Educational program on agricultural environment policies should be reorganized in terms of the level of target group. (6) RDA should prepare synthetical education program for the conservation of rural eco-system.

  • PDF

Detection of Oscillatory Pattern Signals and its Application to the Fault Diagnosis of a Boiler Drum-Level Control System (Oscillatory 파형감지에 의한 보일러 플랜트 드럼수위 제어계통의 고장진단)

  • Kim, Jae-Hwa;Seo, Yeol-Kyu;Jang, Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • This paper proposes a new approach of plant fault diagnosis which is based on detecting the characteristic pattern signals and associating them with the corresponding faults. The new approach does not require analytic modeling of the target system but best reflects the expertise embedded in the experienced human operation by mimicking them in a systematic way. This paper intends to illustrate the feasibility of the proposed by developing the algorithms to detect and estimate the typical characteristic pattern signals, I. e., oscillatory patterns, and applying them to the diagnosis of various faults of a 500MW boiler control system including tube rupture, feed-water leak, and controller failure.

  • PDF

A Study on the Characterization of Land use in Urban Areas, according to Nonpoint Pollutant Source Runoff (도시지역 토지이용에 따른 강우사상별 비점오염물질 유출특성 파악)

  • Ryu, Je-Ha;Yoon, Chun Gyeong;Choi, Jae-Ho;Rhee, Han-Pil;Hwang, Mun-Yuong;Yang, Hwee-Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.309-316
    • /
    • 2013
  • The Non-Point Sources shows different characteristics over a wide area depending on basin situation and rainfall events etc. In addition, Among various land uses in the urban areas, runoff appears high in the paved area, though small in its size, during a heavy rain than in other land use owing to its high impervious rate, and pollutants become severly accumulated owing to continual transportation of vehicles, characteristically showing high concentrations of runoff in the early stage. As a result, several advanced countries including USA give a special emphasis on the paved area as a target for supervision. In view of these aspects, the research is not only required to consider separated sub-basins which are distributed according to land uses, but also needed to develop a suitable monitoring which is reflected rainfall-runoff relation. The on-site monitoring has been performed to collect data in object watershed as well.

Evaluation of Sewer Capacity using Kinetic Hydraulic Model (동력학적 수리해석모델 해석을 통한 하수관거능력 평가)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik;Lee, Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • Hydraulic modeling is widely used to simulate wastewater flow. The simulated models are used to prevent flood and many other problems associated with wastewater flow in planning or rehabilitating sewer systems. In this study, MAKESW (An engineer, South Korea), MOUSE (DHI, Denmark), and SWMM (XPSoftware, USA) are used to for hydraulic modeling of wastewater in C-city, South Korea and E-city, Iraq. These modeling tools produced different results. SWMM comparably overpredicted runoff and peak flow. In using SWMM, use of accurate data with a high confidential level, detail examination over the target basin surface, and the careful selection of a runoff model, which describes Korea's unique hydraulic characteristics are recommended. Modification of existing models through the optimization of variables cannot be achieved at this moment. Setting up an integrated modeling environment is considered to be essential to utilize modeling and further apply the results for various projects. Standardization of GIS database, the criteria for and the scope of model application, and database management systems need to be prepared to expand modeling application.

Fate of Di-2-ethylhexyl Phthalate in Aquatic Food Chain (Di-2-ethylhexyl phthalate의 수서생태계 먹이사슬을 통한 생물축적 및 거동예측)

  • Kim, Eun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.264-271
    • /
    • 2004
  • An aquatic food chain was constructed to provide information of bioaccumulation of DEHP as followed: phytoplankton(Scenedesmus subspicatus) ${\rightarrow}$ zooplankton(Daphnia magna) ${\rightarrow}$ fish(Oryzias latipes). After 10 days of exposure to DEHP, the fish and culture water were analyzed for residual concentration of DEHP and BAF(Bioaccumulation Factor) was determined. In addition, BCF(Bioconcentration Factor) was calculated in exposure tank in which fish were only exposed DEHP by culture water. These experiments provide the relative importance between BAF and BCF. In this study, BCF and BAF did not show any significant difference. Another work in this study was model construction and application to investigate the effect of food chain structure to BAF in higher organism (fish). The model constructed in this study considered the biological characteristics of DEHP such as metabolic parameters, as well as the chemical characteristics such as solubility. This model could be used in prediction of bioaccumulation level in dependent of various food chain structures, when the target organisms or chemicals would be changed.