Browse > Article
http://dx.doi.org/10.12989/gae.2015.9.4.465

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam  

Shahrbanouzadeh, Mehrdad (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Barani, Gholam Abbas (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Shojaee, Saeed (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Publication Information
Geomechanics and Engineering / v.9, no.4, 2015 , pp. 465-481 More about this Journal
Abstract
Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.
Keywords
seepage; dam foundation; finite element method; neural network; Seep3D model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dolling, O.R. and Varas, E.A. (2002), "Artificial neural networks for streamflow prediction", J. Hydraul. Res., 40(5), 547-554.   DOI
2 Fredlund, D.G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, Wiley, Chichester, pp. 136-140.
3 Geo-Slope International (2001), Seep3D Software (Version 1), Calgary, AL, Canada.
4 Ghobadi, M.H., Khanlari, G.R. and Djalaly, H. (2005), "Seepage problems in the right abutment of the Shahid Abbaspour", Eng. Geol., 82(2), 119-126.   DOI
5 Honjo, Y., Giao, P.H. and Naushahi, P.A. (1995), "Seepage analysis of Tarbela dam (Pakistan) using finite element method", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(3), 131A.
6 Jain, A. and Reddi, L. (2011), "Finite-depth seepage below flat aprons with equal end cutoffs", J. Hydraul. Eng., 137(6), 1659-1668.   DOI
7 Jain, S.K. (2001), "Development of integrated sediment rating curves using ANNs", J. Hydraul. Eng., 127(1), 30-37.   DOI
8 Krikland, M.R., Hills, R.G. and Wierenga, P.J. (1992), "Algorithms for solving Richard's equation for variably saturated soils", Water Resour. Res., 28(8), 2049-2058.   DOI
9 Li, L., Barry, D.A. and Pattiaratchi, C.B. (1997), "Numerical modeling of tidal-induced beach water table fluctuations", Coast. Eng., 30(1-2), 105-123.   DOI
10 Money, R.L. (2006), "Comparison of 2D and 3D Seepage model results for excavation near levee toe", GeoCongress, Atlanta, GA, USA, pp. 1-4.
11 Nagy, H.M., Watanabe, K. and Hirano, M. (2002), "Prediction of sediment load concentration in rivers using artificial neural network model", J. Hydraul. Eng., 128(6), 588-595.   DOI
12 Panthulu, T.V., Krishnaiah, C. and Shirke, J.M. (2001), "Detection of seepage paths in earth dams using self-potential and electrical resistivity methods", Eng. Geol., 59(3-4), 281-295.   DOI
13 Rajurkar, M.P., Kothyari, U.C. and Chaube, U.C. (2002), "Artifical neural networks for daily rainfall-runoff modeling", Hydrol. Sci. J., 47(6), 865-878.   DOI
14 Rajurkar, M.P., Kothyari, U.C. and Chaube, U.C. (2004), "Modeling of daily rainfall-runoff relationship with artificial neural network", J. Hydrol., 285(1-4), 96-113.   DOI
15 Rubin, J. (1968), "Theoretical analysis of two-dimensional, transient flow of water in unsaturated and partly saturated soils", Soil Sci. Soc. Am. Proc., 32(5), 607-615.   DOI
16 Tayfur, G. (2002), "Artificial neural networks for sheet sediment transport", Hydrol. Sci. J., 47(6), 879-892.   DOI
17 Tayfur, G., Swiatek, D., Wita, A. and Singh, V.P. (2005), "Case study: Finite element method and artificial neural network models for flow through Jeziorsko Earthfill Dam in Poland", J. Hydrol., 131(6), 431-440.
18 Tien-Kuen, H. (1996), "Stability analysis of an earth dam under steady state seepage", Comput. Struct., 58(6), 1075-1082.   DOI
19 Tokar, A.S. and Johnson, P.A. (1999), "Rainfall-runoff modeling using artificial neural networks", J. Hydrol. Eng., 4(3), 232-239.   DOI
20 Turkmen, S., Ozguler, E., Taga, H. and Karaogullarindan, T. (2002), "Seepage problems in the karstic limestone foundation of the Kalecik Dam (South Turkey)", Eng. Geol., 63(3-4), 247-257.   DOI
21 Xu, Y.Q., Unami, K. and Kawachi, T. (2003) "Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model", Adv. Water Resour., 26(1), 1-7.   DOI
22 Ayoubloo, M.K., Azamathulla, H.Md., Jabbari, E. and Mahjoobi, J. (2011), "Model tree approach for estimation of critical submergence for horizontal intakes in open channel flows", Expert Syst. Appl., 38(8), 10114-10123.   DOI
23 Arun, K.J. and Reddi, L.N. (2011), "Finite-depth seepage below flat aprons with equal end cutoffs", J. Hydraul. Eng, 137(12), 1659-1667.   DOI
24 ASCE Task Committee (2000), "Artificial neural networks in hydrology, II: Hydrologic applications", J. Hydrol. Eng., 5(2), 124-137.   DOI
25 Ataie-Ashtiani, B., Volker, R.E. and Lockington, D.A. (1999), "Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition", J. Hydrol., 222(1-4), 165-174.   DOI
26 Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2008), "Alternative neural networks to estimate the scour below spillways", Adv. Eng. Software, 39(8), 689-698.   DOI
27 Aziz, A.R.A. and Wong, K.V. (1992), "A neural-network approach to the determination of aquifer parameters", J. Ground Water, 30(2), 164-166.   DOI
28 Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2005), "Neural networks for estimation of scour downstream of ski-jump bucket", J. Hydraul. Eng., 131(10), 898-908.   DOI
29 Azamathulla, H.Md., Deo, M.C. and Deolalikar, P.B. (2006), "Estimation of scour below spillways using neural networks", IAHR, J. Hydraul. Res., 44(1), 61-69.   DOI
30 Azamathulla, H.Md. and Zakaria, N.A. (2011), "Prediction of scour below submerged pipeline crossing a river using ANN", IWA - Water Sci. Technol., 63(10), 2225-2230.   DOI
31 Bhatti, M.A. (2005), Fundamental Finite Element Analysis and Applications With Mathematica and Matlab Computations, John Wiley & Sons Inc., Hoboken, NJ, USA.
32 Caudill, M. and Butler, C. (Eds.) (1987), IEEE First International Conference on Neural Networks, San Diego, CA, USA.
33 Chang, Y.Ch., Chen, G.Y. and Yeh, H.D. (2010), "Transient flow into a partially penetrating well during the constant-head test in unconfined aquifers", J. Hydraul. Eng., 137(9), 1054-1064.
34 Childs, E.C. and Collins-George, N. (1950), "The permeability of porous materials", Proc. R. Soc. London, 201(A), 392-405.   DOI
35 Cooley, R.L. (1971), "A finite difference method for unsteady flow in variably saturated porous media: application to a single pumping well", Water Resour. Res., 7(6), 1607-1625.   DOI