• Title/Summary/Keyword: target problem

Search Result 1,786, Processing Time 0.03 seconds

The Design of Target Tracking System Using the Identification of TS Fuzzy Model (TS 퍼지 모델 동정을 이용한 표적 추적 시스템 설계)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1958-1960
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using the identification of TS fuzzy model based on genetic algorithm(GA) and RLS algorithm. In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. In this paper, to resolve these problems of nonlinear filtering technique, the error of EKF by nonlinearity is compensated by identifying TS fuzzy model. In the proposed method, after composing training datum from the parameters of EKF, by identifying the premise and consequent parameters and the rule numbers of TS fuzzy model using GA, and by tuning finely the consequent parameters of TS fuzzy model using recursive least square(RLS) algorithm, the error of EKF is compensated. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

A Target Position Reasoning System for Disaster Response Robot based on Bayesian Network (베이지안 네트워크 기반 재난 대응 로봇의 탐색 목표 추론 시스템)

  • Yang, Kyon-Mo;Seo, Kap-Ho;Lee, Jongil;Lee, Seokjae;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we introduce a target position reasoning system based on Bayesian network that selects destinations of robots on a map to explore compound disaster environments. Compound disaster accidents have hazardous conditions because of a low visibility and a high temperature. Before firefighters enter the environment, the robots notify information in advance, such as victim's positions, number of victims, and status of debris of building. The problem of the previous system is that the system requires a target position to operate the robots and the firefighter need to learn how to use the robot. However, selecting the target position is not easy because of the information gap between eyewitness accounts and map coordinates. In addition, learning the technique how to use the robots needs a lot of time and money. The proposed system infers the target area using Bayesian network and selects proper x, y coordinates on the map based on image processing methods of the map. To verify the proposed system, we designed three example scenarios based on eyewetinees testimonies and compared time consumption between human and the system. In addition, we evaluate the system usability by 40 subjects.

A Polynomial Time Algorithm for Aircraft Landing Problem (항공기 착륙 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.161-168
    • /
    • 2014
  • The optimal solution of minimum cost for aircraft landing problem(ALP) is very difficult problem because the approached aircraft are random time interval. Therefore this problem has been applied by various meta heuristic methods. This paper suggests O(nlog n) polynomial time heuristic algorithm to obtain the optimal solution for ALP. This algorithm sorts the target time of aircraft into ascending order. Then we apply the optimization of change the landing sequence take account of separation time and the cost of landing. For the Airland1 through Airland8 of benchmark data of ALP, we choose 25 data until the number of runway m that the total landing cost is 0. We can be obtain the optimal solution for all of the 25 data. Especially we can be improve the known optimal solution for m = 1of Airland8.

An Efficient Genetic Algorithm for the Allocation and Engagement Scheduling of Interceptor Missiles (효율적인 유전 알고리즘을 활용한 요격미사일 할당 및 교전 일정계획의 최적화)

  • Lee, Dae Ryeock;Yang, Jaehwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.88-102
    • /
    • 2016
  • This paper considers the allocation and engagement scheduling problem of interceptor missiles, and the problem was formulated by using MIP (mixed integer programming) in the previous research. The objective of the model is the maximization of total intercept altitude instead of the more conventional objective such as the minimization of surviving target value. The concept of the time window was used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. The MIP formulation of the problem is very complex due to the complexity of the real problem itself. Hence, the finding of an efficient optimal solution procedure seems to be difficult. In this paper, an efficient genetic algorithm is developed by improving a general genetic algorithm. The improvement is achieved by carefully analyzing the structure of the formulation. Specifically, the new algorithm includes an enhanced repair process and a crossover operation which utilizes the idea of the PSO (particle swarm optimization). Then, the algorithm is throughly tested on 50 randomly generated engagement scenarios, and its performance is compared with that of a commercial package and a more general genetic algorithm, respectively. The results indicate that the new algorithm consistently performs better than a general genetic algorithm. Also, the new algorithm generates much better results than those by the commercial package on several test cases when the execution time of the commercial package is limited to 8,000 seconds, which is about two hours and 13 minutes. Moreover, it obtains a solution within 0.13~33.34 seconds depending on the size of scenarios.

Approximately Coupled Method of Finite Element Method and Boundary Element Method for Two-Dimensional Elasto-static Problem (이차원 탄성 정적 문제를 위한 유한요소법과 경계요소법의 근사 결합 방법)

  • Song, Myung-Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • In this paper, the approximately coupled method of finite element method and boundary element method to obtain efficient and accurate analysis results is proposed for a two-dimensional elasto-static problem with a geometrically abruptly changing part. As the finite element of a two-dimensional problem, three-node and four-node plane stress element is applied, and as the boundary element of a two-dimensional problem, three-node boundary element is applied. In the modeling stage, firstly, an entire analysis target object is modeled as finite elements, and then a geometrically abruptly changing part is modeled as boundary elements. The boundary element is defined using the nodes defined for modeling finite elements. In the analysis stage, finite element analysis is firstly performed on a entire analysis target object, and boundary element analysis is automatically performed afterwards. As for the boundary conditions at boundary element analysis, displacement conditions and stress conditions, which are the results of finite element analysis, are applied. As a numerical example, the analysis results for a two-dimensional elasto-static problem, a plate with a crack, are presented and investigated.

Performance Analysis of the Tracking Filter Employing Jerk Model for Highly Maneuvering Targets (Jerk 모델을 사용한 급격한 기동표적 추적필터의 성능 해석)

  • Joo, Jae-Seok;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.50-66
    • /
    • 2000
  • For a long time target maneuvers in tracking problem have been a difficult task to handle. Once a maneuvering such as abrupt change in target accelerations occur, the tracking fiter no longer yields a reasonable estimate of the target position. In order to resolve this cumbersome maneuvering problem. Advanced methods have here proposed : Colored noise, IE(Input Estimation), VD(Variable Dimension), IMM(Interaction Multiple Model), Jump-type processes and jerk model, etc. In this paper, tracking performance of the jerk model is analyzed. Jerk model in which the derivative of target acceleration is included as a state recently attracted considerable attraction. Firstly 3-dimensional Kalman filter is described on the basis of jerk model. Then using this filter, Monte-Carlo simulations are carried out and the filter formance with respect to the variation of jerk time-constant is analyzed. Especially, since jerk model's transient performance is expected to be poor, the performance of analysis of transient response of the model is included too.

  • PDF

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

An Optimization of the Planned Target Sequencing Problem Using Scheduling Method (스케줄링을 이용한 계획표적 사격순서의 최적화 방안)

  • Hwang, Won-Shik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • It is essential to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. During the artillery fire operations, minimizing the firing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to schedule the artillery fire on the multiple targets to decrease total fire operation time. To design a program to describe a real firing situation, we consider many possible circumstances of changes such as commander's intention, firing constraints, target priority, and contingency plan to make a fire plan in an artillery unit. In order to work out the target sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to a field artillery unit, it will improve the efficiency of the artillery fire force operations.

OD matrix estimation using link use proportion sample data as additional information (표본링크이용비를 추가정보로 이용한 OD 행렬 추정)

  • 백승걸;김현명;신동호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.83-93
    • /
    • 2002
  • To improve the performance of estimation, the research that uses additional information addition to traffic count and target OD with additional survey cost have been studied. The purpose of this paper is to improve the performance of OD estimation by reducing the feasible solutions with cost-efficiently additional information addition to traffic counts and target OD. For this purpose, we Propose the OD estimation method with sample link use proportion as additional information. That is, we obtain the relationship between OD trip and link flow from sample link use proportion that is high reliable information with roadside survey, not from the traffic assignment of target OD. Therefore, this paper proposes OD estimation algorithm in which the conservation of link flow rule under the path-based non-equilibrium traffic assignment concept. Numerical result with test network shows that it is possible to improve the performance of OD estimation where the precision of additional data is low, since sample link use Proportion represented the information showing the relationship between OD trip and link flow. And this method shows the robust performance of estimation where traffic count or OD trip be changed, since this method did not largely affected by the error of target OD and the one of traffic count. In addition to, we also propose that we must set the level of data precision by considering the level of other information precision, because "precision problem between information" is generated when we use additional information like sample link use proportion etc. And we Propose that the method using traffic count as basic information must obtain the link flow to certain level in order to high the applicability of additional information. Finally, we propose that additional information on link have a optimal counting location problem. Expecially by Precision of information side it is possible that optimal survey location problem of sample link use proportion have a much impact on the performance of OD estimation rather than optimal counting location problem of link flow.

Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities (교량의 구조특성에 따른 손상확률과 목표연성도 결정)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • The target performance of a current seismic design code is to achieve collapse-prevention in order to minimize casualties. Existing structures are also being retrofitted to meet this target performance. This seismic performance seems to have been achieved in recent great overseas earthquakes, but the accompanying enormous economic loss is pointed out as a new problem. A new seismic design concept over the current target performance is required to reduce economic loss, in which a target performance is determined by the damage probability in order to control the damage levels of structures. In this study, the seismic behavior of bridges having different characteristics was investigated by nonlinear seismic analyses, and fragility curves with respect to a reference damage level were derived. Based on these results, the characteristics of target ductilities satisfying a target damage probability were investigated.