• Title/Summary/Keyword: target molecule

Search Result 186, Processing Time 0.03 seconds

Adsorption and Release Characteristics of Sulindac on Chitosan-based Molecularly Imprinted Functional Polymer Films (키토산 기반 분자 각인 고분자 필름의 슐린닥 흡착 및 방출 특성)

  • Yoon, Yeon-Hum;Yoon, Soon-Do;Nah, Jae Woon;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • Molecular recognition technology has attracted considerable attention for improving the selectivity of a specific molecule by imprinting it on a polymer matrix. In this study, adsorption and release characteristics of chitosan based drug delivery films imprinted with sulindac (SLD) were investigated in terms of the plasticizer, temperature and pH and the results were also interpreted by the related mathematical models. The adsorption characteristics of target molecules on SLD-imprinted polymer films were better explained by the Freundlich and Sips equation than that of the Langmuir equation. The binding site energy distribution function was also useful for understanding the adsorption relationship between target molecules and polymer films. The drug release of SLD-imprinted polymer films followed the Fickian diffusion mechanism, whereas the drug release using artificial skin followed the non-Fickian diffusion behavior.

Norovirus Targeted Bioreceptor Screening Method based on Lateral Flow Immunoassay (LFIA) (노로바이러스 검출을 위한 측면유동면역분석법 기반의 바이오리셉터 선별기법 개발)

  • Huisoo, Jang;Hyeonji, Cho;Tae-Joon, Jeon;Sun Min, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.136-145
    • /
    • 2022
  • Later flow immunoassay (LFIA) is a protein analytical method based on immunoreaction. On the LFIA based protein analytical method, bioreceptor molecule plays a key role, and so a system that evaluates and manages the binding affinity of bioreceptor is needed to secure detection reliability. In this study, Lateral Flow Immunoassay based rapid Bioreceptor Screening Method (rBSM) is presented that provide a simple and quick evaluating method for the binding affinity to the target protein of the antibody as model bioreceptor. To verify this evaluation method, Virus-like particles (VLP) and anti-VLP antibodies are selected as a model norovirus, which is target protein, and the candidate bioreceptors respectively. Among the 5 different candidate antibodies, appropriate antibody could be sorted out within 30 minutes through rBSM. In addition, selected antibodies were applied to two representative LFIA based techniques, sandwich assay and competitive assay. Among these methods, sandwich assay showed more effective VLP detection method. Through applying selected antibodies and techniques to the commercialized mass production lines, an VLP detecting LFIA kit was developed with a detection limit of 1012 copies/g of VLPs in real samples. Since this proposed method in this study could be easily transformable into other combinations with bioreceptors, it is expected that this technique would be applied to LFIA kit development system and bioreceptor quality management.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Microplate hybridization assay for detection of isoniazid resistance in Mycobacterium tuberculosis

  • Han, Hye-Eun;Lee, In-Soo;Hwang, Joo-Hwan;Bang, Hye-Eun;Kim, Yeun;Cho, Sang-Nae;Kim, Tae-Ue;Lee, Hye-Young
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Early and accurate detection of drug resistant Mycobacterium tuberculosis can improve both the treatment outcome and public health control of tuberculosis. A number of molecular-based techniques have been developed including ones using probe molecules that target drug resistance-related mutations. Although these techniques are highly specific and sensitive, mixed signals can be obtained when the drug resistant isolates are mixed with drug susceptible isolates. In order to overcome this problem, we developed a new drug susceptibility test (DST) for one of the most effective anti-tuberculosis drug, isoniazid. This technique employed a microplate hybridization assay that quantified signals from each probe molecule, and was evaluated using clinical isolates. The evaluation analysis clearly showed that the microplate hybridization assay was an accurate and rapid method that overcame the limitations of DST based on conventional molecular techniques.

Discovery of Novel DUSP4 Inhibitors through the Virtual Screening with Docking Simulations

  • Park, Hwangseo;Jeon, Tae Jin;Chien, Pham Ngoc;Park, So Ya;Oh, Sung Min;Kim, Seung Jun;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2655-2659
    • /
    • 2014
  • Dual specificity protein phosphatase 4 (DUSP4) has been considered a promising target for the development of therapeutics for various human cancers. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule DUSP4 inhibitors. As a consequence of the virtual screening with the modified scoring function to include an effective molecular solvation free energy term, five micromolar DUSP4 inhibitors are found with the associated $IC_{50}$ values ranging from 3.5 to $10.8{\mu}M$. Because these newly identified inhibitors were also screened for having desirable physicochemical properties as a drug candidate, they may serve as a starting point of the structure-activity relationship study to optimize the medical efficacy. Structural features relevant to the stabilization of the new inhibitors in the active site of DUSP4 are discussed in detail.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Current state and prospective of the Korean medical research on the cancer metabolism (암특이적 대사에 대한 한의학적 연구의 현황 및 전망)

  • Chung, Tae-Wook;Kim, Eun-Yeong;Choi, Hee-Jin;Choi, Hee-Jung;Ha, Ki-Tae
    • Journal of Korean Traditional Oncology
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Generally, normal cells synthesize adenosine triphosphate (ATP) through oxidative phosphorylation in the mitochondria. However, they produce ATP through lactic acid fermentation on hypoxic condition. Interestingly, many cancer cells rely on aerobic glycolysis for ATP generation instead of mitochondrial oxidative phosphorylation, which is termed as "Warburg effect". According to results from recent researches on differences of cancer cell metabolism from normal cell metabolism and because chemotherapy to suppress rapidly growing cells, as a side effect of cancer treatment, can still target healthy cells, there is merit in the development of small-molecule inhibitors targeting metabolic enzymes such as pyruvate dehydrogenase kinase (PDHK), lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT). For new anticancer therapy, in this review, we show recent advances in study on cancer cell metabolism and molecules targeting metabolic enzymes which are importantly associated with cancer metabolism for cancer therapy. Furthermore, we would also like to emphasize the necessity of development of molecules targeting metabolic enzymes using herbal medicines and their constituents for anticancer drugs.

Plant cell culture strategies for the production of natural products

  • Ochoa-Villarreal, Marisol;Howat, Susan;Hong, SunMi;Jang, Mi Ok;Jin, Young-Woo;Lee, Eun-Kyong;Loake, Gary J.
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.149-158
    • /
    • 2016
  • Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties.

Screening of Peptides Bound to Anthrax Protective Antigen by Phage Display

  • Kim, Joung-Mok;Park, Hye-Yeon;Choi, Kyoung-Jae;Jung, Hoe-Il;Han, Sung-Hwan;Lee, Jae-Seong;Park, Joon-Shik;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1784-1790
    • /
    • 2006
  • Bacillus anthracis is a causative agent of anthrax. Anthrax toxins are composed of a protective antigen (PA), lethal factor (LF), and edema factor (EF), in which the PA is a central mediator for the delivery of the two enzymatic moieties LF and EF. Therefore, the PA has been an attractive target in the prevention and vaccinization for anthrax toxin. Recently, it has been reported that the molecule consisting of multiple copies of PA-binding peptide, covalently linked to a flexible polymer backbone, blocked intoxification of anthrax toxin in an animal model. In the present study, we have screened novel diverse peptides that bind to PA with a high affinity (picomolar range) from an M13 peptide display library and characterized the binding regions of the peptides. Our works provide a basis to develop novel potent inhibitors or diagnostic probes with a diverse polyvalence.