DOI QR코드

DOI QR Code

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou (Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University) ;
  • Fan Zhang (Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University) ;
  • Junying Ding (Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University)
  • Received : 2022.03.25
  • Accepted : 2022.05.08
  • Published : 2022.06.30

Abstract

As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (grant numbers 81503399), Beijing Natural Science Foundation (grant numbers 7182071) and Beijing Construction Program for High-level Public Health of Technical Talents (grant numbers 2022-3-009). This work would not have been possible without the enormous efforts of our collaborators and scientific friends from over the years. We thank Beijing Institute of Chinese Medicine for support in the process.

References

  1. Wu J, Tang Y. Revisiting the immune balance theory: a neurological insight into the epidemic of COVID-19 and its alike. Front Neurol 2020;11:566680. 
  2. Vyas SP, Goswami R. Striking the right immunological balance prevents progression of tuberculosis. Inflamm Res 2017;66:1031-1056.  https://doi.org/10.1007/s00011-017-1081-z
  3. Cigana C, Lore NI, Bernardini ML, Bragonzi A. Dampening host sensing and avoiding recognition in Pseudomonas aeruginosa pneumonia. J Biomed Biotechnol 2011;2011:852513. 
  4. Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J, Li Y, Li J, Yao H, Liu W, et al. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging (Albany NY) 2019;11:11844-11864.  https://doi.org/10.18632/aging.102454
  5. Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein ameliorates ischemia/reperfusion-induced renal injury in a SIRT1-dependent manner. Nutrients 2017;9:403. 
  6. Chen C, Zhou M, Ge Y, Wang X. SIRT1 and aging related signaling pathways. Mech Ageing Dev 2020;187:111215. 
  7. D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal 2018;28:711-732.  https://doi.org/10.1089/ars.2017.7178
  8. Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone 2019;121:284-292.  https://doi.org/10.1016/j.bone.2019.01.018
  9. Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longev 2020;2020:6782872. 
  10. Zhang W, Huang Q, Zeng Z, Wu J, Zhang Y, Chen Z. Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxid Med Cell Longev 2017;2017:7543973. 
  11. Lu G, Li J, Zhang H, Zhao X, Yan LJ, Yang X. Role and possible mechanisms of Sirt1 in depression. Oxid Med Cell Longev 2018;2018:8596903. 
  12. Yang Q, Zhou Y, Sun Y, Luo Y, Shen Y, Shao A. Will sirtuins be promising therapeutic targets for TBI and associated neurodegenerative diseases? Front Neurosci 2020;14:791.
  13. Suenkel B, Steegborn C. Recombinant preparation, biochemical analysis, and structure determination of sirtuin family histone/protein deacylases. Methods Enzymol 2016;573:183-208.  https://doi.org/10.1016/bs.mie.2015.12.004
  14. Davenport AM, Huber FM, Hoelz A. Structural and functional analysis of human SIRT1. J Mol Biol 2014;426:526-541.  https://doi.org/10.1016/j.jmb.2013.10.009
  15. Lu CL, Liao MT, Hou YC, Fang YW, Zheng CM, Liu WC, Chao CT, Lu KC, Ng YY. Sirtuin-1 and its relevance in vascular calcification. Int J Mol Sci 2020;21:1593. 
  16. Nikas IP, Paschou SA, Ryu HS. The role of nicotinamide in cancer chemoprevention and therapy. Biomolecules 2020;10:477. 
  17. Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res 2018;123:868-885.  https://doi.org/10.1161/CIRCRESAHA.118.312498
  18. Alqarni MH, Foudah AI, Muharram MM, Labrou NE. The pleiotropic function of human sirtuins as modulators of metabolic pathways and viral infections. Cells 2021;10:460. 
  19. Carafa V, Altucci L, Nebbioso A. Dual tumor suppressor and tumor promoter action of sirtuins in determining malignant phenotype. Front Pharmacol 2019;10:38. 
  20. Farghali H, Kemelo MK, Canova NK. SIRT1 modulators in experimentally induced liver injury. Oxid Med Cell Longev 2019;2019:8765954. 
  21. Zhang Y, You S, Tian Y, Lu S, Cao L, Sun Y, Zhang N. WWP2 regulates SIRT1-STAT3 acetylation and phosphorylation involved in hypertensive angiopathy. J Cell Mol Med 2020;24:9041-9054.  https://doi.org/10.1111/jcmm.15538
  22. Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep 2019;52:415-423.  https://doi.org/10.5483/BMBRep.2019.52.7.152
  23. Zhang S, Yang Y, Huang S, Deng C, Zhou S, Yang J, Cao Y, Xu L, Yuan Y, Yang J, et al. SIRT1 inhibits gastric cancer proliferation and metastasis via STAT3/MMP-13 signaling. J Cell Physiol 2019;234:15395-15406.  https://doi.org/10.1002/jcp.28186
  24. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev 2016;31:1-15.  https://doi.org/10.1016/j.cytogfr.2016.05.001
  25. Chen J, Xia H, Zhang L, Zhang H, Wang D, Tao X. Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed Pharmacother 2019;117:109150. 
  26. Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R, Ding F. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018;362:268-278.  https://doi.org/10.1016/j.yexcr.2017.11.027
  27. Rius-Perez S, Torres-Cuevas I, Millan I, Ortega AL, Perez S. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev 2020;2020:1452696. 
  28. Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z, Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Exp Neurol 2021;337:113593. 
  29. Xue H, Li P, Luo Y, Wu C, Liu Y, Qin X, Huang X, Sun C. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine 2019;54:240-247.  https://doi.org/10.1016/j.phymed.2018.10.031
  30. Liang D, Zhuo Y, Guo Z, He L, Wang X, He Y, Li L, Dai H. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 2020;170:10-20.  https://doi.org/10.1016/j.biochi.2019.12.001
  31. Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'. Cardiovasc Diabetol 2018;17:111.
  32. Wang XL, Li T, Li JH, Miao SY, Xiao XZ. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules 2017;22:1529. 
  33. Wang S, He N, Xing H, Sun Y, Ding J, Liu L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res 2020;40:388-394.  https://doi.org/10.1080/10799893.2020.1738483
  34. Brown AK, Webb AE. Regulation of FOXO factors in mammalian cells. Curr Top Dev Biol 2018;127:165-192.  https://doi.org/10.1016/bs.ctdb.2017.10.006
  35. Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity: knowns and unknowns. Semin Cancer Biol 2018;50:53-64.  https://doi.org/10.1016/j.semcancer.2018.01.005
  36. Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, Ding L, Jiang R, Sun J, Sun H, et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis 2017;8:e3088. 
  37. Wu Q, Hu Y, Jiang M, Wang F, Gong G. Effect of autophagy regulated by Sirt1/FoxO1 pathway on the release of factors promoting thrombosis from vascular endothelial cells. Int J Mol Sci 2019;20:4132. 
  38. Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020;24:12355-12367.  https://doi.org/10.1111/jcmm.15725
  39. Roy S, Saha S, Gupta P, Ukil A, Das PK. Crosstalk of PD-1 signaling with the SIRT1/FOXO-1 axis during the progression of visceral leishmaniasis. J Cell Sci 2019;132:jcs226274. 
  40. Taka C, Hayashi R, Shimokawa K, Tokui K, Okazawa S, Kambara K, Inomata M, Yamada T, Matsui S, Tobe K. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients. Int J Chron Obstruct Pulmon Dis 2017;12:3237-3244.  https://doi.org/10.2147/COPD.S144969
  41. Korbecki J, Bobinski R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019;68:443-458.  https://doi.org/10.1007/s00011-019-01231-1
  42. Wang J, Zhu XX, Liu L, Xue Y, Yang X, Zou HJ. SIRT1 prevents hyperuricemia via the PGC-1α/PPARγ-ABCG2 pathway. Endocrine 2016;53:443-452.  https://doi.org/10.1007/s12020-016-0896-7
  43. Wang J, Chen G, Lu L, Zou H. Sirt1 inhibits gouty arthritis via activating PPARγ. Clin Rheumatol 2019;38:3235-3242.  https://doi.org/10.1007/s10067-019-04697-w
  44. Legutko A, Marichal T, Fievez L, Bedoret D, Mayer A, de Vries H, Klotz L, Drion PV, Heirman C, Cataldo D, et al. Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor-γ activity in dendritic cells. J Immunol 2011;187:4517-4529.  https://doi.org/10.4049/jimmunol.1101493
  45. Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets 2018;22:263-277.  https://doi.org/10.1080/14728222.2018.1439924
  46. Xu S, Zeng Z, Zhao M, Huang Q, Gao Y, Dai X, Lu J, Huang W, Zhao K. Evidence for SIRT1 mediated HMGB1 release from kidney cells in the early stages of hemorrhagic shock. Front Physiol 2019;10:854. 
  47. Zhao S, Yang J, Liu T, Zeng J, Mi L, Xiang K. Dexamethasone inhibits NF-κBp65 and HMGB1 expression in the pancreas of rats with severe acute pancreatitis. Mol Med Rep 2018;18:5345-5352.  https://doi.org/10.3892/mmr.2018.9595
  48. de Gregorio E, Colell A, Morales A, Mari M. Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. Int J Mol Sci 2020;21:3858. 
  49. Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z, Fu H, Li Y. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation 2018;15:116.
  50. Meng L, Li L, Lu S, Li K, Su Z, Wang Y, Fan X, Li X, Zhao G. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol 2018;94:7-17.  https://doi.org/10.1016/j.molimm.2017.12.008
  51. Chi JH, Seo GS, Cheon JH, Lee SH. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur J Pharmacol 2017;796:101-109.  https://doi.org/10.1016/j.ejphar.2016.12.026
  52. Wang J, Li R, Peng Z, Hu B, Rao X, Li J. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-κB signaling pathways. Int J Mol Med 2020;45:61-80.  https://doi.org/10.3892/ijmm.2020.4530
  53. Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, Zhao QW, Ma ZQ, Deng XY, Ma SP. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 2019;16:95. 
  54. Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, Li J, Ma J, Piao HR, Jin X, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol 2020;177:5224-5245.  https://doi.org/10.1111/bph.15261
  55. Gu C, Zhang Q, Ni D, Xiao QF, Cao LF, Fei CY, Ying Y, Li N, Tao F. Therapeutic effects of SRT2104 on lung injury in rats with emphysema via reduction of type II alveolar epithelial cell senescence. COPD 2020;17:444-451.  https://doi.org/10.1080/15412555.2020.1797657
  56. Zhang YZ, Wu QJ, Yang X, Xing XX, Chen YY, Wang H. Effects of SIRT1/Akt pathway on chronic inflammatory response and lung function in patients with asthma. Eur Rev Med Pharmacol Sci 2019;23:4948-4953. 
  57. Wu Y, Li W, Hu Y, Liu Y, Sun X. Suppression of sirtuin 1 alleviates airway inflammation through mTOR-mediated autophagy. Mol Med Rep 2020;22:2219-2226.  https://doi.org/10.3892/mmr.2020.11338
  58. Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L. Sirtuin inhibits M. tuberculosis -induced apoptosis in macrophage through glycogen synthase kinase-3β. Arch Biochem Biophys 2020;694:108612. 
  59. Ji K, Sun X, Liu Y, Du L, Wang Y, He N, Wang J, Xu C, Liu Q. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-κB/Smac pathway. Cell Physiol Biochem 2018;48:304-316.  https://doi.org/10.1159/000491730
  60. Chen M, Chen C, Gao Y, Li D, Huang D, Chen Z, Zhao X, Huang Q, Wu D, Lai T, et al. Bergenin-activated SIRT1 inhibits TNF-α-induced proinflammatory response by blocking the NF-κB signaling pathway. Pulm Pharmacol Ther 2020;62:101921. 
  61. Colley T, Mercado N, Kunori Y, Brightling C, Bhavsar PK, Barnes PJ, Ito K. Defective sirtuin-1 increases IL-4 expression through acetylation of GATA-3 in patients with severe asthma. J Allergy Clin Immunol 2016;137:1595-1597.e7.  https://doi.org/10.1016/j.jaci.2015.10.013
  62. Ma K, Lu N, Zou F, Meng FZ. Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 2019;865:172670. 
  63. Yang H, Hu J, Chen YJ, Ge B. Role of Sirt1 in innate immune mechanisms against Mycobacterium tuberculosis via the inhibition of TAK1 activation. Arch Biochem Biophys 2019;667:49-58.  https://doi.org/10.1016/j.abb.2019.04.006
  64. Annamanedi M, Varma GY, Anuradha K, Kalle AM. Celecoxib enhances the efficacy of low-dose antibiotic treatment against polymicrobial sepsis in mice and clinical isolates of ESKAPE pathogens. Front Microbiol 2017;8:805. 
  65. Wang J, Li J, Cao N, Li Z, Han J, Li L. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. Onco Targets Ther 2018;11:7777-7786.  https://doi.org/10.2147/OTT.S159095
  66. Sun X, Dong Z, Li N, Feng X, Liu Y, Li A, Zhu X, Li C, Zhao Z. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1-nuclear factor-κB/p65 pathway in RAW264.7 macrophages and in COPD mice. Int J Chron Obstruct Pulmon Dis 2018;13:2821-2832. https://doi.org/10.2147/COPD.S172579
  67. Li X, Jiang Z, Li X, Zhang X. SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling. Onco Targets Ther 2018;11:1157-1171.  https://doi.org/10.2147/OTT.S137146
  68. Zhan Y, Yang C, Zhang Q, Yao L. Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. J Biochem 2021;169:613-620.  https://doi.org/10.1093/jb/mvaa150
  69. Yang X, Jiang T, Wang Y, Guo L. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep 2019;9:18424. 
  70. Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of Quercetin in COVID-19 treatment. J Inflamm (Lond) 2021;18:3. 
  71. Zhao S, Yu L. Sirtuin 1 activated by SRT1460 protects against myocardial ischemia/reperfusion injury. Clin Hemorheol Microcirc 2021;78:271-281.  https://doi.org/10.3233/CH-201061
  72. Ren Y, Du C, Shi Y, Wei J, Wu H, Cui H. The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress. Int J Mol Med 2017;39:1317-1324.  https://doi.org/10.3892/ijmm.2017.2931
  73. Zheng Y, Kou J, Wang P, Ye T, Wang Z, Gao Z, Cong L, Li M, Dong B, Yang W, et al. Berberine-induced TFEB deacetylation by SIRT1 promotes autophagy in peritoneal macrophages. Aging (Albany NY) 2021;13:7096-7119.  https://doi.org/10.18632/aging.202566
  74. Wang C, Yao Z, Zhang Y, Yang Y, Liu J, Shi Y, Zhang C. Metformin mitigates cartilage degradation by activating AMPK/SIRT1-mediated autophagy in a mouse osteoarthritis model. Front Pharmacol 2020;11:1114. 
  75. Zhang WX, He BM, Wu Y, Qiao JF, Peng ZY. Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 2019;217:8-15.  https://doi.org/10.1016/j.lfs.2018.11.055
  76. Sun T, Hu Y, He W, Shang Y, Yang X, Gong L, Zhang X, Gong P, Yang G. SRT2183 impairs ovarian cancer by facilitating autophagy. Aging (Albany NY) 2020;12:24208-24218.  https://doi.org/10.18632/aging.104126
  77. Wang T, Li X, Sun SL. EX527, a Sirt-1 inhibitor, induces apoptosis in glioma via activating the p53 signaling pathway. Anticancer Drugs 2020;31:19-26.  https://doi.org/10.1097/CAD.0000000000000824
  78. Marx C, Marx-Blumel L, Lindig N, Thierbach R, Hoelzer D, Becker S, Wittig S, Lehmann R, Slevogt H, Heinzel T, et al. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line. Invest New Drugs 2018;36:396-406.  https://doi.org/10.1007/s10637-017-0541-1
  79. He M, Tan B, Vasan K, Yuan H, Cheng F, Ramos da Silva S, Lu C, Gao SJ. SIRT1 and AMPK pathways are essential for the proliferation and survival of primary effusion lymphoma cells. J Pathol 2017;242:309-321.  https://doi.org/10.1002/path.4905
  80. Lu B, Zhang D, Wang X, Lin D, Chen Y, Xu X. Targeting SIRT1 to inhibit the proliferation of multiple myeloma cells. Oncol Lett 2021;21:306. 
  81. Ye Q, Zhang M, Wang Y, Fu S, Han S, Wang L, Wang Q. Sirtinol regulates the balance of Th17/Treg to prevent allograft rejection. Cell Biosci 2017;7:55. 
  82. Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G, Liu X, Su L. Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis 2019;24:798-811.  https://doi.org/10.1007/s10495-019-01559-3
  83. Park JA, Park S, Park WY, Han MK, Lee Y. Splitomicin, a SIRT1 inhibitor, enhances hematopoietic differentiation of mouse embryonic stem cells. Int J Stem Cells 2019;12:21-30.  https://doi.org/10.15283/ijsc18040
  84. Pan S, Leng J, Deng X, Ruan H, Zhou L, Jamal M, Xiao R, Xiong J, Yin Q, Wu Y, et al. Nicotinamide increases the sensitivity of chronic myeloid leukemia cells to doxorubicin via the inhibition of SIRT1. J Cell Biochem 2020;121:574-586. https://doi.org/10.1002/jcb.29303
  85. Chung JY, Jeong JH, Song J. Resveratrol modulates the gut-brain axis: focus on glucagon-like peptide-1, 5-HT, and gut microbiota. Front Aging Neurosci 2020;12:588044. 
  86. Qin H, Zhang H, Zhang X, Zhang S, Zhu S, Wang H. Resveratrol attenuates radiation enteritis through the SIRT1/FOXO3a and PI3K/AKT signaling pathways. Biochem Biophys Res Commun 2021;554:199-205.  https://doi.org/10.1016/j.bbrc.2021.03.122
  87. Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev 2020;2020:8825387. 
  88. Hu T, Shi JJ, Fang J, Wang Q, Chen YB, Zhang SJ. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice. Aging (Albany NY) 2020;12:7015-7029.  https://doi.org/10.18632/aging.103059
  89. Broussy S, Laaroussi H, Vidal M. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). J Enzyme Inhib Med Chem 2020;35:1124-1136.  https://doi.org/10.1080/14756366.2020.1758691
  90. Chen G, Zhang B, Xu H, Sun Y, Shi Y, Luo Y, Jia H, Wang F. Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775-induced DNA damage and apoptosis. Oncogene 2017;36:6863-6872.  https://doi.org/10.1038/onc.2017.297
  91. Moschos MM, Dettoraki M, Androudi S, Kalogeropoulos D, Lavaris A, Garmpis N, Damaskos C, Garmpi A, Tsatsos M. The role of histone deacetylase inhibitors in uveal melanoma: current evidence. Anticancer Res 2018;38:3817-3824.  https://doi.org/10.21873/anticanres.12665
  92. Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM, Kim DH. Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med 2019;23:2872-2889.  https://doi.org/10.1111/jcmm.14194
  93. Hu J, Jing H, Lin H. Sirtuin inhibitors as anticancer agents. Future Med Chem 2014;6:945-966.  https://doi.org/10.4155/fmc.14.44
  94. Chimento A, De Luca A, Nocito MC, Sculco S, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Pezzi V. SIRT1 is involved in adrenocortical cancer growth and motility. J Cell Mol Med 2021;25:3856-3869.  https://doi.org/10.1111/jcmm.16317
  95. Kratz EM, Solkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int J Mol Sci 2021;22:630. 
  96. Guo Q, Chen S, Rao X, Li Y, Pan M, Fu G, Yao Y, Gao X, Tang P, Zhou Y, et al. Inhibition of SIRT1 promotes taste bud stem cell survival and mitigates radiation-induced oral mucositis in mice. Am J Transl Res 2019;11:4789-4799. PUBMED
  97. He M, Li X, Tan Q, Chen Y, Kong Y, You J, Lin X, Lin Y, Zheng Q. Disease burden from COVID-19 symptoms among inpatients at the temporary military hospitals in Wuhan: a retrospective multicentre cross-sectional study. BMJ Open 2021;11:e048822. 
  98. Kadkhoda K. COVID-19: an immunopathological view. MSphere 2020;5:e00344-20. 
  99. Jit BP, Qazi S, Arya R, Srivastava A, Gupta N, Sharma A. An immune epigenetic insight to COVID-19 infection. Epigenomics 2021;13:465-480.  https://doi.org/10.2217/epi-2020-0349
  100. Miller R, Wentzel AR, Richards GA. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Med Hypotheses 2020;144:110044. 
  101. Bordoni V, Tartaglia E, Sacchi A, Fimia GM, Cimini E, Casetti R, Notari S, Grassi G, Marchioni L, Bibas M, et al. The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. Int J Infect Dis 2021;105:49-53.  https://doi.org/10.1016/j.ijid.2021.02.019
  102. DiNicolantonio JJ, McCarty M, Barroso-Aranda J. Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections. Open Heart 2021;8:e001568.
  103. Huarachi Olivera RE, Lazarte Rivera A. Coronavirus disease (COVID-19) and sirtuins. Rev Fac Cien Med Univ Nac Cordoba 2020;77:117-125.  https://doi.org/10.31053/1853.0605.v77.n2.28196
  104. Samadder S. Immunopathological changes in SARS-CoV-2 critical and non-critical pneumonia patients: a systematic review to determine the cause of co-infection. Front Public Health 2021;8:544993. 
  105. Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr 2017;57:2857-2876.  https://doi.org/10.1080/10408398.2015.1077192
  106. Dunne EM, Murad C, Sudigdoadi S, Fadlyana E, Tarigan R, Indriyani SA, Pell CL, Watts E, Satzke C, Hinds J, et al. Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: a cross-sectional study. PLoS One 2018;13:e0195098. 
  107. Elesela S, Morris SB, Narayanan S, Kumar S, Lombard DB, Lukacs NW. Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells. PLoS Pathog 2020;16:e1008319. 
  108. Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 2020;43:1589-1598.  https://doi.org/10.1007/s10753-020-01242-9
  109. Opal SM, Ellis JL, Suri V, Freudenberg JM, Vlasuk GP, Li Y, Chahin AB, Palardy JE, Parejo N, Yamamoto M, et al. Pharmacological SIRT1 activation improves mortality and markedly alters transcriptional profiles that accompany experimental sepsis. Shock 2016;45:411-418.  https://doi.org/10.1097/SHK.0000000000000528
  110. Lin L, Wen SH, Guo SZ, Su XY, Wu HJ, Chong L, Zhang HL, Zhang WX, Li CC. Role of SIRT1 in Streptococcus pneumoniae-induced human β-defensin-2 and interleukin-8 expression in A549 cell. Mol Cell Biochem 2014;394:199-208.  https://doi.org/10.1007/s11010-014-2095-2
  111. Li QR, Tan SR, Yang L, He W, Chen L, Shen FX, Wang Z, Wang HF. Mechanism of chlorogenic acid in alveolar macrophage polarization in Klebsiella pneumoniae-induced pneumonia. J Leukoc Biol 2021. doi:10.1002/JLB.3HI0721-368R. 
  112. Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L. Sirt1 activation negatively regulates overt apoptosis in Mtb-infected macrophage through Bax. Int Immunopharmacol 2021;91:107283. 
  113. Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The immune mechanisms of lung parenchymal damage in tuberculosis and the role of host-directed therapy. Front Microbiol 2018;9:2603. 
  114. Kim SY, Yang CS, Lee HM, Kim JK, Kim YS, Kim YR, Kim JS, Kim TS, Yuk JM, Dufour CR, et al. ESRRA (estrogen-related receptor α) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense. Autophagy 2018;14:152-168.  https://doi.org/10.1080/15548627.2017.1339001
  115. Cheng CY, Gutierrez NM, Marzuki MB, Lu X, Foreman TW, Paleja B, Lee B, Balachander A, Chen J, Tsenova L, et al. Host sirtuin 1 regulates mycobacterial immunopathogenesis and represents a therapeutic target against tuberculosis. Sci Immunol 2017;2:eaaj1789. 
  116. Fernandez-Villar A, Represas-Represas C, Mouronte-Roibas C, Ramos-Hernandez C, Priegue-Carrera A, Fernandez-Garcia S, Lopez-Campos JL. Reliability and usefulness of spirometry performed during admission for COPD exacerbation. PLoS One 2018;13:e0194983. 
  117. Wang Y, Su NX, Pan SG, Ge XP, Dai XP. Fengbaisan suppresses endoplasmic reticulum stress by up-regulating SIRT1 expression to protect rats with chronic obstructive pulmonary diseases. Pharm Biol 2020;58:878-885.  https://doi.org/10.1080/13880209.2020.1806335
  118. Zhou X, Yi D, Wu Y, Pei X, Yu H, Chen Y, Jiang Y, Li W. Expression of diaphragmatic myostatin and correlation with apoptosis in rats with chronic obstructive pulmonary disease. Exp Ther Med 2018;15:2295-2300.  https://doi.org/10.3892/etm.2018.5686
  119. Zhang L, Luo B, Ting Y, He S, Xie L, Sun S. SIRT1 attenuates endoplasmic reticulum stress and apoptosis in rat models of COPD. Growth Factors 2020;38:94-104. https://doi.org/10.1080/08977194.2020.1810029
  120. Wang Y, Chen J, Chen W, Liu L, Dong M, Ji J, Hu D, Zhang N. LINC00987 ameliorates COPD by regulating LPS-induced cell apoptosis, oxidative stress, inflammation and autophagy through Let-7b-5p/SIRT1 axis. Int J Chron Obstruct Pulmon Dis 2020;15:3213-3225.  https://doi.org/10.2147/COPD.S276429
  121. He B, Zhang W, Qiao J, Peng Z, Chai X. Melatonin protects against COPD by attenuating apoptosis and endoplasmic reticulum stress via upregulating SIRT1 expression in rats. Can J Physiol Pharmacol 2019;97:386-391.  https://doi.org/10.1139/cjpp-2018-0529
  122. Gu C, Li Y, Liu J, Ying X, Liu Y, Yan J, Chen C, Zhou H, Cao L, Ma Y. LncRNA-mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease. Mol Med Rep 2017;15:3129-3134.  https://doi.org/10.3892/mmr.2017.6367
  123. Shin NR, Ko JW, Kim JC, Park G, Kim SH, Kim MS, Kim JS, Shin IS. Role of melatonin as an SIRT1 enhancer in chronic obstructive pulmonary disease induced by cigarette smoke. J Cell Mol Med 2020;24:1151-1156.  https://doi.org/10.1111/jcmm.14816
  124. Zhang Y, Liang R, Xie A, Shi W, Huang H, Zhong Y. Antagonistic peptides that specifically bind to the first and second extracellular loops of CCR5 and Anti-IL-23p19 antibody reduce airway inflammation by suppressing the IL-23/Th17 signaling pathway. Mediators Inflamm 2020;2020:1719467. 
  125. Lin X, Ren X, Xiao X, Yang Z, Yao S, Wong GW, Liu Z, Wang C, Su Z, Li J. Important role of immunological responses to environmental exposure in the development of allergic asthma. Allergy Asthma Immunol Res 2020;12:934-948.  https://doi.org/10.4168/aair.2020.12.6.934
  126. Tang L, Chen Q, Meng Z, Sun L, Zhu L, Liu J, Hu J, Ni Z, Wang X. Suppression of Sirtuin-1 increases IL-6 expression by activation of the Akt pathway during allergic asthma. Cell Physiol Biochem 2017;43:1950-1960.  https://doi.org/10.1159/000484119
  127. Zhang H, Sun Y, Rong W, Fan L, Cai Y, Qu Q, Gao Y, Zhao H. miR-221 participates in the airway epithelial cells injury in asthma via targeting SIRT1. Exp Lung Res 2018;44:272-279.  https://doi.org/10.1080/01902148.2018.1533051
  128. Lin H, Wan N. Circular RNA has Circ 001372-reduced inflammation in ovalbumin-induced asthma through Sirt1/NFAT5 signaling pathway by miRNA-128-3p. Mol Biotechnol 2022. doi: 10.1007/s12033-022-00480-6. 
  129. Liu Y, Zhang M, Zhang H, Qian X, Luo L, He Z. Anthocyanins inhibit airway inflammation by downregulating the NF-κB pathway via the miR-138-5p/SIRT1 axis in asthmatic mice. Int Arch Allergy Immunol 2022;183:539-551.  https://doi.org/10.1159/000520645
  130. Lai T, Su G, Wu D, Chen Z, Chen Y, Yi H, Gao Y, Chen C, Zeng M, Chen M, et al. Myeloid-specific SIRT1 deletion exacerbates airway inflammatory response in a mouse model of allergic asthma. Aging (Albany NY) 2021;13:15479-15490.  https://doi.org/10.18632/aging.203104
  131. Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med 2019;40:31-39.  https://doi.org/10.1055/s-0039-1683996
  132. Lupu L, Palmer A, Huber-Lang M. Inflammation, thrombosis, and destruction: the three-headed cerberus of trauma- and SARS-CoV-2-induced ARDS. Front Immunol 2020;11:584514. 
  133. Banavasi H, Nguyen P, Osman H, Soubani AO. Management of ARDS - What works and what does not. Am J Med Sci 2021;362:13-23.  https://doi.org/10.1016/j.amjms.2020.12.019
  134. Liu Y, Guan H, Zhang JL, Zheng Z, Wang HT, Tao K, Han SC, Su LL, Hu D. Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am J Physiol Cell Physiol 2018;314:C449-C455.  https://doi.org/10.1152/ajpcell.00173.2017
  135. Ma L, Zhao Y, Wang R, Chen T, Li W, Nan Y, Liu X, Jin F. 3,5,4'-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway. Mediators Inflamm 2015;2015:143074. 
  136. Yu LL, Zhu M, Huang Y, Zhao YM, Wen JJ, Yang XJ, Wu P. Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression. Eur Rev Med Pharmacol Sci 2018;22:5355-5363.