• Title/Summary/Keyword: target installation

Search Result 243, Processing Time 0.026 seconds

Investigation of touchdown point mismatch during installation for catenary risers

  • Huang, Chaojun;Hu, Guanyu;Yin, Fengjie
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.313-327
    • /
    • 2018
  • Meeting the touchdown point (TDP) target box is one of the challenges during catenary riser installation, especially for deep water or ultra-deep water riser systems. TDP location mismatch compared to the design can result in variation of riser configuration, additional hang-off misalignment, and extra bending loads going into the hang-off porch. A good understanding of the key installation parameters can help to minimize this mismatch, and ensure that the riser global response meets the design criteria. This paper focuses on investigating the potential factors that may affect the touchdown point location, and addressing the challenges both in the design stage and during installation campaign. Conventionally, the vessel offset and current are the most critical factors which may affect the TDP movement during installation. With the offshore exploration going deeper and deeper in the sea (up to 10,000ft), other sources such as the seabed slope and seabed soil stiffness are playing an important role as well. The impacts of potential sources are quantified through case studies for steel catenary riser (SCR) and lazy wave steel catenary riser (LWSCR) in deep water application. Investigations through both theoretical study and numerical validation are carried out. Furthermore, design recommendations are provided during execution phase for the TDP mismatch condition to ensure the integrity of the riser system.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.

A Optical System Design of LED Marine Lanterns Based on a TIR Collimator Lens (전반사 렌즈를 이용한 LED 등명기 광학계 설계)

  • Go, Dong Hyun;Lee, Yoon Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper, we propose the optical system design for a medium sized LED marine lanterns which simplifies the multi-layer structure into a single structure. In order to satisfy the target fixed intensity(35,000cd) and vertical divergence($-2.5^{\circ}{\sim}-4.0^{\circ}$, $+2.5^{\circ}{\sim}+4.0^{\circ}$), we use the total internal reflection collimator lens. And a Monte Carlo simulation has been utilized to optimize a condition of a LED package, TIR lens and outside lens. The computer simulation results indicated that this LED marine lanterns can produce of a fixed intensity(35,382cd) and vertical divergence($-3.1^{\circ}{\sim}+2.5^{\circ}$). Using the this optical system, we achieve the target value of LED lanterns.

A Study on Driving System and Constant Output System for a Low Pressure UV Lamp (저압 UV램프 구동시스템 및 출력안정화 시스템에 관한 연구)

  • Yi, Chin-Woo;No, Jae-Yup
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.19-23
    • /
    • 2005
  • The target of this research is a design of constant and high efficiency driving system for a low pressure UV lamp. An UV lamp system is one of wide range electrical equipments for semiconductor manufacturing and sterilization, etc... It is essential the technique of constant output for high added value device. A design target of driving system for low pressure UV lamp of conversion efficiency is 90[%], UV lamp of output stability within ${\pm}7.5[%]$, and lamp power is over 200[W]. The results meet the target of this study well, and have a benefit of domestic market occupation and enable to export. And if protection circuits were developed, it increases the stability of a electronic ballast for UV lamps.

A Study on Grounding Resistance by Parallel Connection (병렬 접속에 의한 접지저항에 관한 연구)

  • 고희석;최종규;류희석;김주찬
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.307-312
    • /
    • 2002
  • For accuracy of an experiment, measure changing of grounding resistance by short period after construction and investigated the efficiency of grounding's different methode of parallel connection. We could confirm on measurement's accuracy, error through comparing the theoretical value and measured value. Therefore, reduction ratio can be expected from execution measurement to receive a target resistance value. By the result, we could evaluate the method of rod grounding electrode's proper execution

  • PDF

An experimental study of the optimum location and spatial characteristics of photosensor for the improvement of daylight responsive dimming system performance (광센서 조광제어시스템의 성능향상을 위한 광센서의 방향성에 관한 실험적 연구)

  • 정봉근;최안섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.87-90
    • /
    • 2002
  • Daylight responsive dimming system, which is always able to automatically maintain the target illuminance, is a energy strategic system. It is importance note that the photosensor depends how to be precisely indicated workplane illuminance at any location of indoor. Therefore, the purpose of this paper is to find out the optimum location and spatial characteristics of photosensor by considering the correlation for the correct calibration of workplane illuminance and photosensor signal.

  • PDF

Effective Management of Power System by Demand Control (수요 제어에 의한 전력 시스템의 효율 운전)

  • 최진원
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.77-79
    • /
    • 2003
  • For the management of maximum demand power, power control system that is consist of CCMS(Central Control and Management System) and MCCS(Minimum Cost Control and management Software) is proposed. MCCS has the basic functions of the set of target power and the enrollment of load control logic. And also MCCS give the simulation of Power rate that help more effective Demand Control.

  • PDF

Active Power Factor Correction Technology of Electronic Ballast (안정기용 능동역율 제어기술)

  • Han, Soo-Bin;Park, Suck-In;Jeoung, Hak-Guen;Jung, Bong-Man;You, Seong-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.225-227
    • /
    • 2006
  • Active power factor correction methods for electronic ballast are reviewed in this paper. PFC technology becomes more important due to various wattage ratings of new light sources. Expecially, most popular two method critical conduction mode and average mode, are described. Each characteristics are compared in relation to application target and power rating.

  • PDF

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.