• 제목/요약/키워드: target disease

검색결과 987건 처리시간 0.032초

MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology

  • Kim, Jongmin
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.65-72
    • /
    • 2018
  • The endothelial to mesenchymal transition (EndMT) is a newly recognized, fundamental biological process involved in development and tissue regeneration, as well as pathological processes such as the complications of diabetes, fibrosis and pulmonary arterial hypertension. The EndMT process is tightly controlled by diverse signaling networks, similar to the epithelial to mesenchymal transition. Accumulating evidence suggests that microRNAs (miRNAs) are key regulators of this network, with the capacity to target multiple messenger RNAs involved in the EndMT process as well as in the regulation of disease progression. Thus, it is highly important to understand the molecular basis of miRNA control of EndMT. This review highlights the current fund of knowledge regarding the known links between miRNAs and the EndMT process, with a focus on the mechanism that regulates associated signaling pathways and discusses the potential for the EndMT as a therapeutic target to treat many diseases.

Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders

  • Das, Soumyadip;Ramakrishna, Suresh;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.203-214
    • /
    • 2020
  • Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.

Corynespora cassiicola에 의한 로즈마리 점무늬병 (Occurrence of Target Spot on Rosemary Caused by Corynespora cassiicola in Korea)

  • 이왕휴;한상준;최인영
    • 식물병연구
    • /
    • 제19권1호
    • /
    • pp.55-59
    • /
    • 2013
  • 이 연구는 국내에 보고되지 않은 로즈마리 점무늬병이 남원과 전주의 재배 온실에서 발생하여 구명하고자 실험하였다. 이 병은 주로 고온 다습한 시기인 장마끝 무렵에 발생이 많았다. 로즈마리의 잎과 줄기에 검은점무늬(직경 3-5 mm) 및 시들음 증상이 나타났다. 병든 조직을 습실 처리하면 분생자경과 분생포자가 형성되었다. 로즈마리 점무늬병균의 분생포자는 체인상의 가늘고 긴 원통형으로, 길이는 $55-275{\times}7-14{\mu}m$이었다. 분생포자는 분생자경 위에 형성되었고, 분생포자의 위격벽의 수는 8-10개이었다. 또한 생장적온은 감자한천 배지와 암흑조건에서 $30^{\circ}C$이었다. 포트 식물에 병원성 검정결과 분리한 병원균은 접종 3일 후에 잎과 줄기에서 자연 병징과 같은 점무늬 및 시들음 증상이 재현되었고, 병든 부위에서 동일한 균이 재 분리되었다. 따라서 병원성이 있음이 확인되었다. rDNA ITS 영역의 염기서열 분석결과 로즈마리에 점무늬병을 일으키는 병원균은 Corynespora cassiicola로 GenBank accession number JQ595296, JQ595297, FJ852715, AY238606와 염기서열이 100% 일치하였고, C. cassiicola와 같은 계통군에 속하였다. 따라서, 로즈마리 잎 및 가지 점무늬병균은 C. cassiicola로 보고하고자 한다.

Therapeutic applications of gene editing in chronic liver diseases: an update

  • Shin, Ji Hyun;Lee, Jinho;Jung, Yun Kyung;Kim, Kyeong Sik;Jeong, Jaemin;Choi, Dongho
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.251-258
    • /
    • 2022
  • Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.

MicroRNAs in Human Diseases: From Autoimmune Diseases to Skin, Psychiatric and Neurodegenerative Diseases

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.227-244
    • /
    • 2011
  • MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of miRNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress.

질병진단을 위한 나노자임 연구의 최근 동향 (Recent Advances in Nanozyme Research for Disease Diagnostics)

  • 신호연;윤태영;김문일
    • KSBB Journal
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2015
  • Nanomaterial-based artificial enzymes (Nanozymes) have attracted recent attention because of their unique advantageous characteristics such as excellent robustness and stability, low-cost production by facile scale-up, and longterm preservation capability that are critically required as an alternative to natural enzymes. These nanozymes exhibit natural enzyme-like activity, and they have been applied to diverse kinds of detection methods for disease-associated biomolecules such as DNAs, proteins, cells, and small molecules including glucose. To highlight the progress in the field of disease diagnostics using nanozyme, this review discusses many nanozyme-based detection methods categorized by the types of target biomolecules. Finally, we address the current challenges and perspectives for the widespread utilization of nanozyme-based disease diagnostics.

Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis

  • Yejin Ahn;Jong Hoon Park
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.291-300
    • /
    • 2024
  • Autosomal dominant polycystic kidney disease (ADPKD), a congenital genetic disorder, is a notable contributor to the prevalence of chronic kidney disease worldwide. Despite the absence of a complete cure, ongoing research aims for early diagnosis and treatment. Although agents such as tolvaptan and mTOR inhibitors have been utilized, their effectiveness in managing the disease during its initial phase has certain limitations. This review aimed to explore new targets for the early diagnosis and treatment of ADPKD, considering ongoing developments. We particularly focus on cell polarity, which is a key factor that influences the process and pace of cyst formation. In addition, we aimed to identify agents or treatments that can prevent or impede the progression of renal fibrosis, ultimately slowing its trajectory toward end-stage renal disease. Recent advances in slowing ADPKD progression have been examined, and potential therapeutic approaches targeting multiple pathways have been introduced. This comprehensive review discusses innovative strategies to address the challenges of ADPKD and provides valuable insights into potential avenues for its prevention and treatment.

The Right Gastroepiploic Artery Graft for Coronary Artery Bypass Grafting: A 30-Year Experience

  • Suma, Hisayoshi
    • Journal of Chest Surgery
    • /
    • 제49권4호
    • /
    • pp.225-231
    • /
    • 2016
  • Throughout its 30-year history, the right gastroepiploic artery (GEA) has been useful for in situ grafts in coronary artery bypass grafting (CABG). The early graft patency rate is high, and the late patency rate has improved by using the skeletonized GEA graft and proper target selection, which involves having a target coronary artery with a tight >90% stenosis. Total arterial revascularization with the internal thoracic artery and GEA grafts is an option for achieving better outcomes from CABG procedures.

의료의 질 평가 우선순위 설정 (Priority Areas for National Health Care Quality Evaluation in Korea)

  • 신숙연;박춘선;김선민;김남순;이상일
    • 보건행정학회지
    • /
    • 제19권3호
    • /
    • pp.1-26
    • /
    • 2009
  • Objectives : To identify target areas and set priorities among those areas identified for national quality evaluation. Methods : Target areas were identified from: i) analysis of the national health insurance claims data, mortality and prevalence data ii) various group surveys, including representatives from 22 medical specialty associations, 19 physician associations, QI staffs in hospital, civil organizations, and commissioners of Health Insurance Review and Assessment Service(HIRA) ⅲ) literature reviews and RAM(RAND/UCLA appropriateness method). The priority areas for national quality evaluation represented the full spectrum of health care and the entire life span. The criteria for selecting the priority areas were impact, improvability, and measurability. The priority areas were divided into three categories : short-term, mid-term, long-term. Results: Based on the group surveys and the data analysis, 46 candidates were selected as quality evaluation priority areas. 13 areas were selected as having a short-term priority areas: tuberculosis, community acquired pneumonia, stroke, ischaemic heart disease, diabetes, hypertension, chronic lower respiratory disease(asthma, chronic obstructive pulmonary disease), intensive care unit, emergency room, nosocomial infection, use of antibiotics, multiple medication and renal failure. This results suggested that we need to enlarge the target priority areas to the chronic diseases in short-term. Conclusions: The priority areas identified from the study will assist healthcare quality associated institutions as well as HIRA in selecting quality evaluation areas. It is required to develope and implement strategies for improving the quality of care within the next 5 years.

A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

  • Kim, Hee Jin;Kim, Pitna;Shin, Chan Young
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.8-29
    • /
    • 2013
  • Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.