Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2289

Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders  

Das, Soumyadip (Graduate School of Biomedical Science and Engineering, Hanyang University)
Ramakrishna, Suresh (Graduate School of Biomedical Science and Engineering, Hanyang University)
Kim, Kye-Seong (Graduate School of Biomedical Science and Engineering, Hanyang University)
Abstract
Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.
Keywords
Alzheimer's disease; deubiquitinating enzyme inhibitors; epilepsy; neural stem cells; Parkinson's disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ross, O.A., Braithwaite, A.T., Skipper, L.M., Kachergus, J., Hulihan, M.M., Middleton, F.A., Nishioka, K., Fuchs, J., Gasser, T., and Maraganore, D.M. (2008). Genomic investigation of ${\alpha}$-synuclein multiplication and Parkinsonism. Ann. Neurol. 63, 743-750.   DOI
2 Sahtoe, D.D. and Sixma, T.K. (2015). Layers of DUB regulation. Trends Biochem. Sci. 40, 456-467.   DOI
3 Saigoh, K., Wang, Y.L., Suh, J.G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., and Kikuchi, T. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47.
4 Saliba, R.S., Michels, G., Jacob, T.C., Pangalos, M.N., and Moss, S.J. (2007). Activity-dependent ubiquitination of GABAA receptors regulates their accumulation at synaptic sites. J. Neurosci. 27, 13341-13351.   DOI
5 Schneider, J., Arvanitakis, Z., Yu, L., Boyle, P., Leurgans, S., and Bennett, D. (2012). Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain 135, 3005-3014.   DOI
6 Bianchetti, E., Bates, S.J., Carroll, S.L., Siegelin, M.D., and Roth, K.A. (2018). Usp9X regulates cell death in malignant peripheral nerve sheath tumors. Sci. Rep. 8, 17390.   DOI
7 Bland, T., Sahin, G.S., Zhu, M., Dillon, C., Impey, S., Appleyard, S.M., and Wayman, G.A. (2019). USP8 deubiquitinates the leptin receptor and is necessary for leptin-mediated synapse formation. Endocrinology 160, 1982-1998.   DOI
8 Cadavid, A., Ginzel, A., and Fischer, J.A. (2000). The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127, 1727-1736.   DOI
9 Cartier, A.E., Djakovic, S.N., Salehi, A., Wilson, S.M., Masliah, E., and Patrick, G.N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J. Neurosci. 29, 7857-7868.   DOI
10 Ceriani, M., Amigoni, L., D'Aloia, A., Berruti, G., and Martegani, E. (2015). The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp. Cell Res. 333, 49-59.   DOI
11 Chastagner, P., Israel, A., and Brou, C. (2008). AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3, e2735.   DOI
12 Chen, F., Sugiura, Y., Myers, K.G., Liu, Y., and Lin, W. (2010). Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107, 1636-1641.   DOI
13 Aron, R., Pellegrini, P., Green, E.W., Maddison, D.C., Opoku-Nsiah, K., Wong, J.S., Daub, A.C., Giorgini, F., and Finkbeiner, S. (2018). Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat. Commun. 9, 3191.   DOI
14 Spillantini, M.G. and Goedert, M. (2000). The ${\alpha}$-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann. N. Y. Acad. Sci. 920, 16-27.   DOI
15 Schwabenland, M., Mossad, O., Peres, A.G., Kessler, F., Maron, F.J.M., Harsan, L.A., Bienert, T., von Elverfeldt, D., Knobeloch, K.P., Staszewski, O., et al. (2019). Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol. Commun. 7, 106.   DOI
16 Setsuie, R. and Wada, K. (2007). The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem. Int. 51, 105-111.   DOI
17 Shih, R.H., Wang, C.Y., and Yang, C.M. (2015). NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci. 8, 77.   DOI
18 Tarpey, P.S., Smith, R., Pleasance, E., Whibley, A., Edkins, S., Hardy, C., O'meara, S., Latimer, C., Dicks, E., and Menzies, A. (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41, 535.   DOI
19 Tai, H.C. and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826.   DOI
20 Tang, B.L. (2009). REST regulation of neural development: from outside-in? Cell Adh. Migr. 3, 1-2.   DOI
21 Tavana, O., Li, D., Dai, C., Lopez, G., Banerjee, D., Kon, N., Chen, C., Califano, A., Yamashiro, D.J., Sun, H., et al. (2016). HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat. Med. 22, 1180-1186.   DOI
22 Taya, S., Yamamoto, T., Kanai-Azuma, M., Wood, S.A., and Kaibuchi, K. (1999). The deubiquitinating enzyme Fam interacts with and stabilizes ${\beta}$-catenin. Genes Cells 4, 757-767.   DOI
23 Todi, S.V., Williams, A.J., and Paulson, H.L. (2007). Polyglutamine disorders including Huntington's disease. In Molecular Neurology, S.G. Waxman, ed. (Cambridge: Academic Press), pp. 257-275.
24 Tessier-Lavigne, M. and Goodman, C.S. (1996). The molecular biology of axon guidance. Science 274, 1123-1133.   DOI
25 Todi, S. and Das, C. (2012). Should deubiquitinating enzymes be targeted for therapy. Clin. Pharmacol. Biopharm. 1, 1000e108.
26 Todi, S.V. and Paulson, H.L. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 34, 370-382.   DOI
27 Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). ${\alpha}$-Synuclein in Lewy bodies. Nature 388, 839.   DOI
28 Chen, X., Zhang, B., and Fischer, J.A. (2002). A specific protein substrate for a deubiquitinating enzyme: liquid facets is the substrate of fat facets. Genes Dev. 16, 289-294.   DOI
29 Chen, H., Polo, S., Di Fiore, P.P., and De Camilli, P.V. (2003). Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc. Natl. Acad. Sci. U. S. A. 100, 14908-14913.   DOI
30 Chen, P.C., Qin, L.N., Li, X.M., Walters, B.J., Wilson, J.A., Mei, L., and Wilson, S.M. (2009). The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909-10919.   DOI
31 Choe, E.A., Liao, L., Zhou, J.Y., Cheng, D., Duong, D.M., Jin, P., Tsai, L.H., and Peng, J. (2007). Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J. Neurosci. 27, 9503-9512.   DOI
32 Colland, F. (2010). The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 38, 137-143.   DOI
33 Das, C.M., Taylor, P., Gireud, M., Singh, A., Lee, D., Fuller, G., Ji, L., Fangusaro, J., Rajaram, V., Goldman, S., et al. (2013). The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 32, 1691-1701.   DOI
34 DiAntonio, A., Haghighi, A.P., Portman, S.L., Lee, J.D., Amaranto, A.M., and Goodman, C.S. (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449.   DOI
35 Vaden, J.H., Bhattacharyya, B.J., Chen, P.C., Watson, J.A., Marshall, A.G., Phillips, S.E., Wilson, J.A., King, G.D., Miller, R.J., and Wilson, S.M. (2015). Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol. Neurodegener. 10, 3.   DOI
36 Karpel-Massler, G., Banu, M.A., Shu, C., Halatsch, M.E., Westhoff, M.A., Bruce, J.N., Canoll, P., and Siegelin, M.D. (2016). Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 7, 12791-12805.   DOI
37 Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., and Akiguchi, I. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32. 1. Nat. Genet. 8, 221-228.   DOI
38 Kerrisk Campbell, M. and Sheng, M. (2018). USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels. J. Neurosci. 38, 5289-5301.   DOI
39 Toews, M.L. (2006). Adenosine receptors find a new partner and move out. Mol. Pharmacol. 69, 1075-1078.   DOI
40 Tomida, S., Mamiya, T., Sakamaki, H., Miura, M., Aosaki, T., Masuda, M., Niwa, M., Kameyama, T., Kobayashi, J., and Iwaki, Y. (2009). Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat. Genet. 41, 688.   DOI
41 Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E.H., Krystal, G., Ali, S., and Lebrun, J.J. (2002). Activin/TGF-${\beta}$ induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat. Cell Biol. 4, 963.   DOI
42 Kowalski, J.R., Dahlberg, C.L., and Juo, P. (2011). The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 31, 1341-1354.   DOI
43 DiAntonio, A. and Hicke, L. (2004). Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223-246.   DOI
44 Ding, K., Ji, J., Zhang, X., Huang, B., Chen, A., Zhang, D., Li, X., Wang, X., and Wang, J. (2019). RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 38, 6414-6428.   DOI
45 Komander, D. and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229.   DOI
46 Kon, N., Zhong, J., Kobayashi, Y., Li, M., Szabolcs, M., Ludwig, T., Canoll, P.D., and Gu, W. (2011). Roles of HAUSP-mediated p53 regulation in central nervous system development. Cell Death Differ. 18, 1366-1375.   DOI
47 Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D., and Courtois, G. (2003). The tumour suppressor CYLD negatively regulates NF-${\kappa}B$ signalling by deubiquitination. Nature 424, 801-805.   DOI
48 Kowalski, J.R. and Juo, P. (2012). The role of deubiquitinating enzymes in synaptic function and nervous system diseases. Neural. Plast. 2012, 892749.   DOI
49 Kulathu, Y. and Komander, D. (2012). Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508.   DOI
50 Wey, A. and Knoepfler, P.S. (2010). C-myc and N-myc in the developing brain. Aging (Albany NY) 2, 261-262.   DOI
51 Wilkinson, K.D., Deshpande, S., and Larsen, C.N. (1992). Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem. Soc. Trans. 20, 631-637.   DOI
52 Williams, A.J. and Paulson, H.L. (2008). Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 31, 521-528.   DOI
53 Wilson, S.M., Bhattacharyya, B., Rachel, R.A., Coppola, V., Tessarollo, L., Householder, D.B., Fletcher, C.F., Miller, R.J., Copeland, N.G., and Jenkins, N.A. (2002). Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420.   DOI
54 Wood, M.A., Kaplan, M.P., Brensinger, C.M., Guo, W., and Abel, T. (2005). Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus 15, 610-621.   DOI
55 Durcan, T.M., Kontogiannea, M., Thorarinsdottir, T., Fallon, L., Williams, A.J., Djarmati, A., Fantaneanu, T., Paulson, H.L., and Fon, E.A. (2010). The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum. Mol. Genet. 20, 141-154.   DOI
56 Wrigley, J.D., Eckersley, K., Hardern, I.M., Millard, L., Walters, M., Peters, S.W., Mott, R., Nowak, T., Ward, R.A., Simpson, P.B., et al. (2011). Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem. Biophys. 60, 99.   DOI
57 Xiao, N., Li, H., Luo, J., Wang, R., Chen, H., Chen, J., and Wang, P. (2012). Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits $TNF{\alpha}$-induced cancer cell migration. Biochem. J. 441, 979-987.   DOI
58 Ye, Y. and Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755.   DOI
59 Ding, M. and Shen, K. (2008). The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays 30, 1075-1083.   DOI
60 Dobson, T.H., Hatcher, R.J., Swaminathan, J., Das, C.M., Shaik, S., Tao, R.H., Milite, C., Castellano, S., Taylor, P.H., and Sbardella, G. (2017). Regulation of USP37 expression by REST-associated G9a-dependent histone methylation. Mol. Cancer Res. 15, 1073-1084.   DOI
61 Ehlers, M.D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231.   DOI
62 Everington, E.A., Gibbard, A.G., Swinny, J.D., and Seifi, M. (2018). Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front. Mol. Neurosci. 11, 18.   DOI
63 Fang, X., Zhou, W., Wu, Q., Huang, Z., Shi, Y., Yang, K., Chen, C., Xie, Q., Mack, S.C., Wang, X., et al. (2017). Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J. Exp. Med. 214, 245-267.   DOI
64 Yuasa-Kawada, J., Kinoshita-Kawada, M., Wu, G., Rao, Y., and Wu, J.Y. (2009). Midline crossing and Slit responsiveness of commissural axons require USP33. Nat. Neurosci. 12, 1087-1089.   DOI
65 Kwasna, D., Abdul Rehman, S.A., Natarajan, J., Matthews, S., Madden, R., De Cesare, V., Weidlich, S., Virdee, S., Ahel, I., Gibbs-Seymour, I., et al. (2018). Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol. Cell 70, 150-164.e6.   DOI
66 Laedermann, C.J., Cachemaille, M., Kirschmann, G., Pertin, M., Gosselin, R.D., Chang, I., Albesa, M., Towne, C., Schneider, B.L., and Kellenberger, S. (2013). Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J. Clin. Invest. 123, 3002-3013.   DOI
67 Yeates, E.F.A. and Tesco, G. (2016). The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J. Biol. Chem. 291, 15753-15766.   DOI
68 Yi, L., Cui, Y., Xu, Q., and Jiang, Y. (2016). Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep. 36, 2935-2945.   DOI
69 Yoon, K. and Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709.   DOI
70 Zhadanov, A.B., Provance, D.W., Jr., Speer, C., Coffin, J.D., Goss, D., Blixt, J., Reichert, C.M., and Mercer, J.A. (1999). Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr. Biol. 9, 880-882.   DOI
71 Zhang, C.W., Hang, L., Yao, T.P., and Lim, K.L. (2016). Parkin regulation and neurodegenerative disorders. Front. Aging Neurosci. 7, 248.
72 Li, Z., Cheng, Z., Raghothama, C., Cui, Z., Liu, K., Li, X., Jiang, C., Jiang, W., Tan, M., Ni, X., et al. (2017). USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1. Nucleic Acids Res. 46, 823-839.
73 Francis, F., Koulakoff, A., Boucher, D., Chafey, P., Schaar, B., Vinet, M.C., Friocourt, G., McDonnell, N., Reiner, O., and Kahn, A. (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247-256.   DOI
74 Lappe-Siefke, C., Loebrich, S., Hevers, W., Waidmann, O.B., Schweizer, M., Fehr, S., Fritschy, J.M., Dikic, I., Eilers, J., and Wilson, S.M. (2009). The ataxia (axJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 5, e1000631.   DOI
75 Lasky, J.L. and Wu, H. (2005). Notch signaling, brain development, and human disease. Pediatr. Res. 57, 104-109.   DOI
76 Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., and Gygi, S.P. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179.   DOI
77 Lennox, G., Lowe, J., Morrell, K., Landon, M., and Mayer, R.J. (1988). Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci. Lett. 94, 211-217.   DOI
78 Li, Z.H., Yu, Y., Du, C., Fu, H., Wang, J., and Tian, Y. (2013). RNA interference-mediated USP22 gene silencing promotes human brain glioma apoptosis and induces cell cycle arrest. Oncol. Lett. 5, 1290-1294.   DOI
79 Dupont, S., Mamidi, A., Cordenonsi, M., Montagner, M., Zacchigna, L., Adorno, M., Martello, G., Stinchfield, M.J., Soligo, S., and Morsut, L. (2009). FAM/USP9x, a deubiquitinating enzyme essential for $TGF{\beta}$ signaling, controls Smad4 monoubiquitination. Cell 136, 123-135.   DOI
80 Zhou, A., Lin, K., Zhang, S., Ma, L., Xue, J., Morris, S.A., Aldape, K.D., and Huang, S. (2017). Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 18, 1318-1330.   DOI
81 Guan, K.L. and Rao, Y. (2003). Signalling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941.   DOI
82 Friocourt, G., Kappeler, C., Saillour, Y., Fauchereau, F., Rodriguez, M.S., Bahi, N., Vinet, M.C., Chafey, P., Poirier, K., and Taya, S. (2005). Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes. Mol. Cell. Neurosci. 28, 153-164.   DOI
83 Goldmann, T., Zeller, N., Raasch, J., Kierdorf, K., Frenzel, K., Ketscher, L., Basters, A., Staszewski, O., Brendecke, S.M., Spiess, A., et al. (2015). USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34, 1612-1629.   DOI
84 Gong, B., Cao, Z., Zheng, P., Vitolo, O.V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., and Arancio, O. (2006). Ubiquitin hydrolase Uch-L1 rescues ${\beta}$-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775-788.   DOI
85 Hegde, A.N., Inokuchi, K., Pei, W., Casadio, A., Ghirardi, M., Chain, D.G., Martin, K.C., Kandel, E.R., and Schwartz, J.H. (1997). Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in aplysia. Cell 89, 115-126.   DOI
86 Hong, S., Kim, S.J., Ka, S., Choi, I., and Kang, S. (2002). USP7, a ubiquitinspecific protease, interacts with ataxin-1, the SCA1 gene product. Mol. Cell. Neurosci. 20, 298-306.   DOI
87 Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R.J. (1988). Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J. Pathol. 155, 9-15.   DOI
88 Hospenthal, M.K., Mevissen, T.E., and Komander, D. (2015). Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (UbiCRest). Nat. Protoc. 10, 349-361.   DOI
89 Hu, M., Chen, H., Han, C., Lan, J., Xu, Y., Li, C., Xue, Y., and Lou, M. (2016). Expression and functional implications of USP17 in glioma. Neurosci. Lett. 616, 125-131.   DOI
90 Liu, X., Hebron, M., Shi, W., Lonskaya, I., and Moussa, C.E.H. (2018). Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum. Mol. Genet. 28, 548-560.
91 Lowe, J., McDermott, H., Landon, M., Mayer, R.J., and Wilkinson, K.D. (1990). Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. 161, 153-160.   DOI
92 Matsumoto, M., Yada, M., Hatakeyama, S., Ishimoto, H., Tanimura, T., Tsuji, S., Kakizuka, A., Kitagawa, M., and Nakayama, K.I. (2004). Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23, 659-669.   DOI
93 Melo-Cardenas, J., Zhang, Y., Zhang, D.D., and Fang, D. (2016). Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 7, 44848-44856.   DOI
94 Mevissen, T.E. and Komander, D. (2017). Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159-192.   DOI
95 Milojevic, T., Reiterer, V., Stefan, E., Korkhov, V.M., Dorostkar, M.M., Ducza, E., Ogris, E., Boehm, S., Freissmuth, M., and Nanoff, C. (2006). The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol. Pharmacol. 69, 1083-1094.   DOI
96 Imai, S., Mamiya, T., Tsukada, A., Sakai, Y., Mouri, A., Nabeshima, T., and Ebihara, S. (2012). Ubiquitin-specific peptidase 46 (Usp46) regulates mouse immobile behavior in the tail suspension test through the GABAergic system. PLoS One 7, e39084.   DOI
97 Mori, H., Kondo, J., and Ihara, Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 235, 1641-1644.   DOI
98 Huang, Z., Wu, Q., Guryanova, O.A., Cheng, L., Shou, W., Rich, J.N., and Bao, S. (2011). Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat. Cell Biol. 13, 142-152.   DOI
99 Huo, Y., Khatri, N., Hou, Q., Gilbert, J., Wang, G., and Man, H.Y. (2015). The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J. Neurochem. 134, 1067-1080.   DOI
100 Ikeda, W., Nakanishi, H., Miyoshi, J., Mandai, K., Ishizaki, H., Tanaka, M., Togawa, A., Takahashi, K., Nishioka, H., and Yoshida, H. (1999). Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117-1132.   DOI
101 Anderson, C., Crimmins, S., Wilson, J.A., Korbel, G.A., Ploegh, H.L., and Wilson, S.M. (2005). Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724-731.   DOI
102 Abbracchio, M.P. and Cattabeni, F. (1999). Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann. N. Y. Acad. Sci. 890, 79-92.   DOI
103 Abdul Rehman, S.A., Kristariyanto, Y.A., Choi, S.Y., Nkosi, P.J., Weidlich, S., Labib, K., Hofmann, K., and Kulathu, Y. (2016). MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146-155.   DOI
104 Alexopoulou, Z., Lang, J., Perrett, R.M., Elschami, M., Hurry, M.E.D., Kim, H.T., Mazaraki, D., Szabo, A., Kessler, B.M., Goldberg, A.L., et al. (2016). Deubiquitinase Usp8 regulates ${\alpha}$-synuclein clearance and modifies its toxicity in Lewy body disease. Proc. Natl. Acad. Sci. U. S. A. 113, E4688-E4697.   DOI
105 Anggono, V. and Huganir, R.L. (2012). Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 22, 461-469.   DOI
106 Anta, B., Martin-Rodriguez, C., Gomis-Perez, C., Calvo, L., Lopez-Benito, S., Calderon-Garcia, A.A., Vicente-Garcia, C., Villarroel, A., and Arevalo, J.C. (2016). Ubiquitin-specific protease 36 (USP36) controls neuronal precursor cell-expressed developmentally down-regulated 4-2 (Nedd4-2) actions over the neurotrophin receptor TrkA and potassium voltage-gated channels 7.2/3 (Kv7.2/3). J. Biol. Chem. 291, 19132-19145.   DOI
107 Kaltenbach, L.S., Romero, E., Becklin, R.R., Chettier, R., Bell, R., Phansalkar, A., Strand, A., Torcassi, C., Savage, J., Hurlburt, A., et al. (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3, e82.   DOI
108 Jana, N.R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K., and Nukina, N. (2005). Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280, 11635-11640.   DOI
109 Jason, J.Y. and Ehlers, M.D. (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacological Rev. 59, 14-39.   DOI
110 Jiang, X., Yu, M., Ou, Y., Cao, Y., Yao, Y., Cai, P., and Zhang, F. (2017). Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. Neurochem. Res. 42, 3245-3253.   DOI
111 Paemka, L., Mahajan, V.B., Ehaideb, S.N., Skeie, J.M., Tan, M.C., Wu, S., Cox, A.J., Sowers, L.P., Gecz, J., Jolly, L., et al. (2015). Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet. 11, e1005022.   DOI
112 Mouchantaf, R., Azakir, B.A., McPherson, P.S., Millard, S.M., Wood, S.A., and Angers, A. (2006). The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J. Biol. Chem. 281, 38738-38747.   DOI
113 Nishi, R., Wijnhoven, P., le Sage, C., Tjeertes, J., Galanty, Y., Forment, J.V., Clague, M.J., Urbe, S., and Jackson, S.P. (2014). Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat. Cell Biol. 16, 1016-1018.   DOI
114 Overstreet, E., Fitch, E., and Fischer, J.A. (2004). Fat facets and liquid facets promote delta endocytosis and delta signaling in the signaling cells. Development 131, 5355-5366.   DOI
115 Paulson, H.L., Das, S.S., Crino, P.B., Perez, M.K., Patel, S.C., Gotsdiner, D., Fischbeck, K.H., and Pittman, R.N. (1997). Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453-462.   DOI
116 Ristic, G., Tsou, W.L., and Todi, S.V. (2014). An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci. 7, 72.   DOI
117 Qin, N., Han, F., Li, L., Ge, Y., Lin, W., Wang, J., Wu, L., Zhao, G., Deng, Y., and Zhang, J. (2019). Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol. Lett. 17, 958-964.
118 Qiu, L., Joazeiro, C., Fang, N., Wang, H.Y., Elly, C., Altman, Y., Fang, D., Hunter, T., and Liu, Y.C. (2000). Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734-35737.   DOI