DOI QR코드

DOI QR Code

Critical Roles of Deubiquitinating Enzymes in the Nervous System and Neurodegenerative Disorders

  • Das, Soumyadip (Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Ramakrishna, Suresh (Graduate School of Biomedical Science and Engineering, Hanyang University) ;
  • Kim, Kye-Seong (Graduate School of Biomedical Science and Engineering, Hanyang University)
  • Received : 2019.11.25
  • Accepted : 2020.02.02
  • Published : 2020.03.31

Abstract

Post-translational modifications play major roles in the stability, function, and localization of target proteins involved in the nervous system. The ubiquitin-proteasome pathway uses small ubiquitin molecules to degrade neuronal proteins. Deubiquitinating enzymes (DUBs) reverse this degradation and thereby control neuronal cell fate, synaptic plasticity, axonal growth, and proper function of the nervous system. Moreover, mutations or downregulation of certain DUBs have been found in several neurodegenerative diseases, as well as gliomas and neuroblastomas. Based on emerging findings, DUBs represent an important target for therapeutic intervention in various neurological disorders. Here, we summarize advances in our understanding of the roles of DUBs related to neurobiology.

Keywords

References

  1. Abbracchio, M.P. and Cattabeni, F. (1999). Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann. N. Y. Acad. Sci. 890, 79-92. https://doi.org/10.1111/j.1749-6632.1999.tb07983.x
  2. Abdul Rehman, S.A., Kristariyanto, Y.A., Choi, S.Y., Nkosi, P.J., Weidlich, S., Labib, K., Hofmann, K., and Kulathu, Y. (2016). MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146-155. https://doi.org/10.1016/j.molcel.2016.05.009
  3. Alexopoulou, Z., Lang, J., Perrett, R.M., Elschami, M., Hurry, M.E.D., Kim, H.T., Mazaraki, D., Szabo, A., Kessler, B.M., Goldberg, A.L., et al. (2016). Deubiquitinase Usp8 regulates ${\alpha}$-synuclein clearance and modifies its toxicity in Lewy body disease. Proc. Natl. Acad. Sci. U. S. A. 113, E4688-E4697. https://doi.org/10.1073/pnas.1523597113
  4. Anderson, C., Crimmins, S., Wilson, J.A., Korbel, G.A., Ploegh, H.L., and Wilson, S.M. (2005). Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724-731. https://doi.org/10.1111/j.1471-4159.2005.03409.x
  5. Anggono, V. and Huganir, R.L. (2012). Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 22, 461-469. https://doi.org/10.1016/j.conb.2011.12.006
  6. Anta, B., Martin-Rodriguez, C., Gomis-Perez, C., Calvo, L., Lopez-Benito, S., Calderon-Garcia, A.A., Vicente-Garcia, C., Villarroel, A., and Arevalo, J.C. (2016). Ubiquitin-specific protease 36 (USP36) controls neuronal precursor cell-expressed developmentally down-regulated 4-2 (Nedd4-2) actions over the neurotrophin receptor TrkA and potassium voltage-gated channels 7.2/3 (Kv7.2/3). J. Biol. Chem. 291, 19132-19145. https://doi.org/10.1074/jbc.M116.722637
  7. Aron, R., Pellegrini, P., Green, E.W., Maddison, D.C., Opoku-Nsiah, K., Wong, J.S., Daub, A.C., Giorgini, F., and Finkbeiner, S. (2018). Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat. Commun. 9, 3191. https://doi.org/10.1038/s41467-018-05653-z
  8. Bianchetti, E., Bates, S.J., Carroll, S.L., Siegelin, M.D., and Roth, K.A. (2018). Usp9X regulates cell death in malignant peripheral nerve sheath tumors. Sci. Rep. 8, 17390. https://doi.org/10.1038/s41598-018-35806-5
  9. Bland, T., Sahin, G.S., Zhu, M., Dillon, C., Impey, S., Appleyard, S.M., and Wayman, G.A. (2019). USP8 deubiquitinates the leptin receptor and is necessary for leptin-mediated synapse formation. Endocrinology 160, 1982-1998. https://doi.org/10.1210/en.2019-00107
  10. Cadavid, A., Ginzel, A., and Fischer, J.A. (2000). The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development 127, 1727-1736. https://doi.org/10.1242/dev.127.8.1727
  11. Cartier, A.E., Djakovic, S.N., Salehi, A., Wilson, S.M., Masliah, E., and Patrick, G.N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J. Neurosci. 29, 7857-7868. https://doi.org/10.1523/JNEUROSCI.1817-09.2009
  12. Ceriani, M., Amigoni, L., D'Aloia, A., Berruti, G., and Martegani, E. (2015). The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp. Cell Res. 333, 49-59. https://doi.org/10.1016/j.yexcr.2015.01.019
  13. Chastagner, P., Israel, A., and Brou, C. (2008). AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3, e2735. https://doi.org/10.1371/journal.pone.0002735
  14. Chen, F., Sugiura, Y., Myers, K.G., Liu, Y., and Lin, W. (2010). Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107, 1636-1641. https://doi.org/10.1073/pnas.0911516107
  15. Chen, H., Polo, S., Di Fiore, P.P., and De Camilli, P.V. (2003). Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc. Natl. Acad. Sci. U. S. A. 100, 14908-14913. https://doi.org/10.1073/pnas.2136625100
  16. Chen, P.C., Qin, L.N., Li, X.M., Walters, B.J., Wilson, J.A., Mei, L., and Wilson, S.M. (2009). The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909-10919. https://doi.org/10.1523/JNEUROSCI.2635-09.2009
  17. Chen, X., Zhang, B., and Fischer, J.A. (2002). A specific protein substrate for a deubiquitinating enzyme: liquid facets is the substrate of fat facets. Genes Dev. 16, 289-294. https://doi.org/10.1101/gad.961502
  18. Choe, E.A., Liao, L., Zhou, J.Y., Cheng, D., Duong, D.M., Jin, P., Tsai, L.H., and Peng, J. (2007). Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J. Neurosci. 27, 9503-9512. https://doi.org/10.1523/JNEUROSCI.1408-07.2007
  19. Colland, F. (2010). The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem. Soc. Trans. 38, 137-143. https://doi.org/10.1042/BST0380137
  20. Das, C.M., Taylor, P., Gireud, M., Singh, A., Lee, D., Fuller, G., Ji, L., Fangusaro, J., Rajaram, V., Goldman, S., et al. (2013). The deubiquitylase USP37 links REST to the control of p27 stability and cell proliferation. Oncogene 32, 1691-1701. https://doi.org/10.1038/onc.2012.182
  21. DiAntonio, A., Haghighi, A.P., Portman, S.L., Lee, J.D., Amaranto, A.M., and Goodman, C.S. (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449. https://doi.org/10.1038/35086595
  22. DiAntonio, A. and Hicke, L. (2004). Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223-246. https://doi.org/10.1146/annurev.neuro.27.070203.144317
  23. Ding, K., Ji, J., Zhang, X., Huang, B., Chen, A., Zhang, D., Li, X., Wang, X., and Wang, J. (2019). RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 38, 6414-6428. https://doi.org/10.1038/s41388-019-0888-1
  24. Ding, M. and Shen, K. (2008). The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays 30, 1075-1083. https://doi.org/10.1002/bies.20843
  25. Dobson, T.H., Hatcher, R.J., Swaminathan, J., Das, C.M., Shaik, S., Tao, R.H., Milite, C., Castellano, S., Taylor, P.H., and Sbardella, G. (2017). Regulation of USP37 expression by REST-associated G9a-dependent histone methylation. Mol. Cancer Res. 15, 1073-1084. https://doi.org/10.1158/1541-7786.MCR-16-0424
  26. Dupont, S., Mamidi, A., Cordenonsi, M., Montagner, M., Zacchigna, L., Adorno, M., Martello, G., Stinchfield, M.J., Soligo, S., and Morsut, L. (2009). FAM/USP9x, a deubiquitinating enzyme essential for $TGF{\beta}$ signaling, controls Smad4 monoubiquitination. Cell 136, 123-135. https://doi.org/10.1016/j.cell.2008.10.051
  27. Durcan, T.M., Kontogiannea, M., Thorarinsdottir, T., Fallon, L., Williams, A.J., Djarmati, A., Fantaneanu, T., Paulson, H.L., and Fon, E.A. (2010). The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum. Mol. Genet. 20, 141-154. https://doi.org/10.1093/hmg/ddq452
  28. Ehlers, M.D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231. https://doi.org/10.1038/nn1013
  29. Everington, E.A., Gibbard, A.G., Swinny, J.D., and Seifi, M. (2018). Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front. Mol. Neurosci. 11, 18. https://doi.org/10.3389/fnmol.2018.00018
  30. Fang, X., Zhou, W., Wu, Q., Huang, Z., Shi, Y., Yang, K., Chen, C., Xie, Q., Mack, S.C., Wang, X., et al. (2017). Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J. Exp. Med. 214, 245-267. https://doi.org/10.1084/jem.20151673
  31. Francis, F., Koulakoff, A., Boucher, D., Chafey, P., Schaar, B., Vinet, M.C., Friocourt, G., McDonnell, N., Reiner, O., and Kahn, A. (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247-256. https://doi.org/10.1016/S0896-6273(00)80777-1
  32. Friocourt, G., Kappeler, C., Saillour, Y., Fauchereau, F., Rodriguez, M.S., Bahi, N., Vinet, M.C., Chafey, P., Poirier, K., and Taya, S. (2005). Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes. Mol. Cell. Neurosci. 28, 153-164. https://doi.org/10.1016/j.mcn.2004.09.005
  33. Goldmann, T., Zeller, N., Raasch, J., Kierdorf, K., Frenzel, K., Ketscher, L., Basters, A., Staszewski, O., Brendecke, S.M., Spiess, A., et al. (2015). USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34, 1612-1629. https://doi.org/10.15252/embj.201490791
  34. Gong, B., Cao, Z., Zheng, P., Vitolo, O.V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., and Arancio, O. (2006). Ubiquitin hydrolase Uch-L1 rescues ${\beta}$-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775-788. https://doi.org/10.1016/j.cell.2006.06.046
  35. Guan, K.L. and Rao, Y. (2003). Signalling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941. https://doi.org/10.1038/nrn1254
  36. Hegde, A.N., Inokuchi, K., Pei, W., Casadio, A., Ghirardi, M., Chain, D.G., Martin, K.C., Kandel, E.R., and Schwartz, J.H. (1997). Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in aplysia. Cell 89, 115-126. https://doi.org/10.1016/S0092-8674(00)80188-9
  37. Hong, S., Kim, S.J., Ka, S., Choi, I., and Kang, S. (2002). USP7, a ubiquitinspecific protease, interacts with ataxin-1, the SCA1 gene product. Mol. Cell. Neurosci. 20, 298-306. https://doi.org/10.1006/mcne.2002.1103
  38. Hospenthal, M.K., Mevissen, T.E., and Komander, D. (2015). Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (UbiCRest). Nat. Protoc. 10, 349-361. https://doi.org/10.1038/nprot.2015.018
  39. Hu, M., Chen, H., Han, C., Lan, J., Xu, Y., Li, C., Xue, Y., and Lou, M. (2016). Expression and functional implications of USP17 in glioma. Neurosci. Lett. 616, 125-131. https://doi.org/10.1016/j.neulet.2016.01.015
  40. Huang, Z., Wu, Q., Guryanova, O.A., Cheng, L., Shou, W., Rich, J.N., and Bao, S. (2011). Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat. Cell Biol. 13, 142-152. https://doi.org/10.1038/ncb2153
  41. Huo, Y., Khatri, N., Hou, Q., Gilbert, J., Wang, G., and Man, H.Y. (2015). The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J. Neurochem. 134, 1067-1080. https://doi.org/10.1111/jnc.13194
  42. Ikeda, W., Nakanishi, H., Miyoshi, J., Mandai, K., Ishizaki, H., Tanaka, M., Togawa, A., Takahashi, K., Nishioka, H., and Yoshida, H. (1999). Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117-1132. https://doi.org/10.1083/jcb.146.5.1117
  43. Imai, S., Mamiya, T., Tsukada, A., Sakai, Y., Mouri, A., Nabeshima, T., and Ebihara, S. (2012). Ubiquitin-specific peptidase 46 (Usp46) regulates mouse immobile behavior in the tail suspension test through the GABAergic system. PLoS One 7, e39084. https://doi.org/10.1371/journal.pone.0039084
  44. Jana, N.R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K., and Nukina, N. (2005). Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280, 11635-11640. https://doi.org/10.1074/jbc.M412042200
  45. Jason, J.Y. and Ehlers, M.D. (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacological Rev. 59, 14-39. https://doi.org/10.1124/pr.59.1.4
  46. Jiang, X., Yu, M., Ou, Y., Cao, Y., Yao, Y., Cai, P., and Zhang, F. (2017). Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. Neurochem. Res. 42, 3245-3253. https://doi.org/10.1007/s11064-017-2361-2
  47. Kaltenbach, L.S., Romero, E., Becklin, R.R., Chettier, R., Bell, R., Phansalkar, A., Strand, A., Torcassi, C., Savage, J., Hurlburt, A., et al. (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3, e82. https://doi.org/10.1371/journal.pgen.0030082
  48. Karpel-Massler, G., Banu, M.A., Shu, C., Halatsch, M.E., Westhoff, M.A., Bruce, J.N., Canoll, P., and Siegelin, M.D. (2016). Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget 7, 12791-12805. https://doi.org/10.18632/oncotarget.7302
  49. Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., and Akiguchi, I. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32. 1. Nat. Genet. 8, 221-228. https://doi.org/10.1038/ng1194-221
  50. Kerrisk Campbell, M. and Sheng, M. (2018). USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels. J. Neurosci. 38, 5289-5301. https://doi.org/10.1523/JNEUROSCI.3305-17.2018
  51. Komander, D. and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229. https://doi.org/10.1146/annurev-biochem-060310-170328
  52. Kon, N., Zhong, J., Kobayashi, Y., Li, M., Szabolcs, M., Ludwig, T., Canoll, P.D., and Gu, W. (2011). Roles of HAUSP-mediated p53 regulation in central nervous system development. Cell Death Differ. 18, 1366-1375. https://doi.org/10.1038/cdd.2011.12
  53. Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D., and Courtois, G. (2003). The tumour suppressor CYLD negatively regulates NF-${\kappa}B$ signalling by deubiquitination. Nature 424, 801-805. https://doi.org/10.1038/nature01802
  54. Kowalski, J.R., Dahlberg, C.L., and Juo, P. (2011). The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 31, 1341-1354. https://doi.org/10.1523/JNEUROSCI.4765-10.2011
  55. Kowalski, J.R. and Juo, P. (2012). The role of deubiquitinating enzymes in synaptic function and nervous system diseases. Neural. Plast. 2012, 892749. https://doi.org/10.1155/2012/892749
  56. Kulathu, Y. and Komander, D. (2012). Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508. https://doi.org/10.1038/nrm3394
  57. Kwasna, D., Abdul Rehman, S.A., Natarajan, J., Matthews, S., Madden, R., De Cesare, V., Weidlich, S., Virdee, S., Ahel, I., Gibbs-Seymour, I., et al. (2018). Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol. Cell 70, 150-164.e6. https://doi.org/10.1016/j.molcel.2018.02.023
  58. Laedermann, C.J., Cachemaille, M., Kirschmann, G., Pertin, M., Gosselin, R.D., Chang, I., Albesa, M., Towne, C., Schneider, B.L., and Kellenberger, S. (2013). Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain. J. Clin. Invest. 123, 3002-3013. https://doi.org/10.1172/JCI68996
  59. Lappe-Siefke, C., Loebrich, S., Hevers, W., Waidmann, O.B., Schweizer, M., Fehr, S., Fritschy, J.M., Dikic, I., Eilers, J., and Wilson, S.M. (2009). The ataxia (axJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 5, e1000631. https://doi.org/10.1371/journal.pgen.1000631
  60. Lasky, J.L. and Wu, H. (2005). Notch signaling, brain development, and human disease. Pediatr. Res. 57, 104-109. https://doi.org/10.1203/01.PDR.0000159632.70510.3D
  61. Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., and Gygi, S.P. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179. https://doi.org/10.1038/nature09299
  62. Lennox, G., Lowe, J., Morrell, K., Landon, M., and Mayer, R.J. (1988). Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci. Lett. 94, 211-217. https://doi.org/10.1016/0304-3940(88)90297-2
  63. Li, Z., Cheng, Z., Raghothama, C., Cui, Z., Liu, K., Li, X., Jiang, C., Jiang, W., Tan, M., Ni, X., et al. (2017). USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1. Nucleic Acids Res. 46, 823-839.
  64. Li, Z.H., Yu, Y., Du, C., Fu, H., Wang, J., and Tian, Y. (2013). RNA interference-mediated USP22 gene silencing promotes human brain glioma apoptosis and induces cell cycle arrest. Oncol. Lett. 5, 1290-1294. https://doi.org/10.3892/ol.2013.1188
  65. Liu, X., Hebron, M., Shi, W., Lonskaya, I., and Moussa, C.E.H. (2018). Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies. Hum. Mol. Genet. 28, 548-560.
  66. Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R.J. (1988). Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J. Pathol. 155, 9-15. https://doi.org/10.1002/path.1711550105
  67. Lowe, J., McDermott, H., Landon, M., Mayer, R.J., and Wilkinson, K.D. (1990). Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. 161, 153-160. https://doi.org/10.1002/path.1711610210
  68. Matsumoto, M., Yada, M., Hatakeyama, S., Ishimoto, H., Tanimura, T., Tsuji, S., Kakizuka, A., Kitagawa, M., and Nakayama, K.I. (2004). Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23, 659-669. https://doi.org/10.1038/sj.emboj.7600081
  69. Melo-Cardenas, J., Zhang, Y., Zhang, D.D., and Fang, D. (2016). Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 7, 44848-44856. https://doi.org/10.18632/oncotarget.8602
  70. Mevissen, T.E. and Komander, D. (2017). Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159-192. https://doi.org/10.1146/annurev-biochem-061516-044916
  71. Milojevic, T., Reiterer, V., Stefan, E., Korkhov, V.M., Dorostkar, M.M., Ducza, E., Ogris, E., Boehm, S., Freissmuth, M., and Nanoff, C. (2006). The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol. Pharmacol. 69, 1083-1094. https://doi.org/10.1124/mol.105.015818
  72. Mori, H., Kondo, J., and Ihara, Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 235, 1641-1644. https://doi.org/10.1126/science.3029875
  73. Mouchantaf, R., Azakir, B.A., McPherson, P.S., Millard, S.M., Wood, S.A., and Angers, A. (2006). The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J. Biol. Chem. 281, 38738-38747. https://doi.org/10.1074/jbc.M605959200
  74. Nishi, R., Wijnhoven, P., le Sage, C., Tjeertes, J., Galanty, Y., Forment, J.V., Clague, M.J., Urbe, S., and Jackson, S.P. (2014). Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat. Cell Biol. 16, 1016-1018. https://doi.org/10.1038/ncb3028
  75. Overstreet, E., Fitch, E., and Fischer, J.A. (2004). Fat facets and liquid facets promote delta endocytosis and delta signaling in the signaling cells. Development 131, 5355-5366. https://doi.org/10.1242/dev.01434
  76. Paemka, L., Mahajan, V.B., Ehaideb, S.N., Skeie, J.M., Tan, M.C., Wu, S., Cox, A.J., Sowers, L.P., Gecz, J., Jolly, L., et al. (2015). Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet. 11, e1005022. https://doi.org/10.1371/journal.pgen.1005022
  77. Paulson, H.L., Das, S.S., Crino, P.B., Perez, M.K., Patel, S.C., Gotsdiner, D., Fischbeck, K.H., and Pittman, R.N. (1997). Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453-462. https://doi.org/10.1002/ana.410410408
  78. Qin, N., Han, F., Li, L., Ge, Y., Lin, W., Wang, J., Wu, L., Zhao, G., Deng, Y., and Zhang, J. (2019). Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol. Lett. 17, 958-964.
  79. Qiu, L., Joazeiro, C., Fang, N., Wang, H.Y., Elly, C., Altman, Y., Fang, D., Hunter, T., and Liu, Y.C. (2000). Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734-35737. https://doi.org/10.1074/jbc.M007300200
  80. Ristic, G., Tsou, W.L., and Todi, S.V. (2014). An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front. Mol. Neurosci. 7, 72. https://doi.org/10.3389/fnmol.2014.00072
  81. Ross, O.A., Braithwaite, A.T., Skipper, L.M., Kachergus, J., Hulihan, M.M., Middleton, F.A., Nishioka, K., Fuchs, J., Gasser, T., and Maraganore, D.M. (2008). Genomic investigation of ${\alpha}$-synuclein multiplication and Parkinsonism. Ann. Neurol. 63, 743-750. https://doi.org/10.1002/ana.21380
  82. Sahtoe, D.D. and Sixma, T.K. (2015). Layers of DUB regulation. Trends Biochem. Sci. 40, 456-467. https://doi.org/10.1016/j.tibs.2015.05.002
  83. Saigoh, K., Wang, Y.L., Suh, J.G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., and Kikuchi, T. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47.
  84. Saliba, R.S., Michels, G., Jacob, T.C., Pangalos, M.N., and Moss, S.J. (2007). Activity-dependent ubiquitination of GABAA receptors regulates their accumulation at synaptic sites. J. Neurosci. 27, 13341-13351. https://doi.org/10.1523/JNEUROSCI.3277-07.2007
  85. Schneider, J., Arvanitakis, Z., Yu, L., Boyle, P., Leurgans, S., and Bennett, D. (2012). Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain 135, 3005-3014. https://doi.org/10.1093/brain/aws234
  86. Schwabenland, M., Mossad, O., Peres, A.G., Kessler, F., Maron, F.J.M., Harsan, L.A., Bienert, T., von Elverfeldt, D., Knobeloch, K.P., Staszewski, O., et al. (2019). Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol. Commun. 7, 106. https://doi.org/10.1186/s40478-019-0757-8
  87. Setsuie, R. and Wada, K. (2007). The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem. Int. 51, 105-111. https://doi.org/10.1016/j.neuint.2007.05.007
  88. Shih, R.H., Wang, C.Y., and Yang, C.M. (2015). NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci. 8, 77. https://doi.org/10.3389/fnmol.2015.00077
  89. Spillantini, M.G. and Goedert, M. (2000). The ${\alpha}$-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann. N. Y. Acad. Sci. 920, 16-27. https://doi.org/10.1111/j.1749-6632.2000.tb06900.x
  90. Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). ${\alpha}$-Synuclein in Lewy bodies. Nature 388, 839. https://doi.org/10.1038/42166
  91. Tai, H.C. and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826. https://doi.org/10.1038/nrn2499
  92. Tang, B.L. (2009). REST regulation of neural development: from outside-in? Cell Adh. Migr. 3, 1-2. https://doi.org/10.4161/cam.3.1.7836
  93. Tarpey, P.S., Smith, R., Pleasance, E., Whibley, A., Edkins, S., Hardy, C., O'meara, S., Latimer, C., Dicks, E., and Menzies, A. (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41, 535. https://doi.org/10.1038/ng.367
  94. Tavana, O., Li, D., Dai, C., Lopez, G., Banerjee, D., Kon, N., Chen, C., Califano, A., Yamashiro, D.J., Sun, H., et al. (2016). HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat. Med. 22, 1180-1186. https://doi.org/10.1038/nm.4180
  95. Taya, S., Yamamoto, T., Kanai-Azuma, M., Wood, S.A., and Kaibuchi, K. (1999). The deubiquitinating enzyme Fam interacts with and stabilizes ${\beta}$-catenin. Genes Cells 4, 757-767. https://doi.org/10.1046/j.1365-2443.1999.00297.x
  96. Tessier-Lavigne, M. and Goodman, C.S. (1996). The molecular biology of axon guidance. Science 274, 1123-1133. https://doi.org/10.1126/science.274.5290.1123
  97. Todi, S. and Das, C. (2012). Should deubiquitinating enzymes be targeted for therapy. Clin. Pharmacol. Biopharm. 1, 1000e108.
  98. Todi, S.V. and Paulson, H.L. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 34, 370-382. https://doi.org/10.1016/j.tins.2011.05.004
  99. Todi, S.V., Williams, A.J., and Paulson, H.L. (2007). Polyglutamine disorders including Huntington's disease. In Molecular Neurology, S.G. Waxman, ed. (Cambridge: Academic Press), pp. 257-275.
  100. Toews, M.L. (2006). Adenosine receptors find a new partner and move out. Mol. Pharmacol. 69, 1075-1078. https://doi.org/10.1124/mol.106.022699
  101. Tomida, S., Mamiya, T., Sakamaki, H., Miura, M., Aosaki, T., Masuda, M., Niwa, M., Kameyama, T., Kobayashi, J., and Iwaki, Y. (2009). Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat. Genet. 41, 688. https://doi.org/10.1038/ng.344
  102. Vaden, J.H., Bhattacharyya, B.J., Chen, P.C., Watson, J.A., Marshall, A.G., Phillips, S.E., Wilson, J.A., King, G.D., Miller, R.J., and Wilson, S.M. (2015). Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol. Neurodegener. 10, 3. https://doi.org/10.1186/1750-1326-10-3
  103. Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E.H., Krystal, G., Ali, S., and Lebrun, J.J. (2002). Activin/TGF-${\beta}$ induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat. Cell Biol. 4, 963. https://doi.org/10.1038/ncb885
  104. Wey, A. and Knoepfler, P.S. (2010). C-myc and N-myc in the developing brain. Aging (Albany NY) 2, 261-262. https://doi.org/10.18632/aging.100151
  105. Wilkinson, K.D., Deshpande, S., and Larsen, C.N. (1992). Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem. Soc. Trans. 20, 631-637. https://doi.org/10.1042/bst0200631
  106. Williams, A.J. and Paulson, H.L. (2008). Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 31, 521-528. https://doi.org/10.1016/j.tins.2008.07.004
  107. Wilson, S.M., Bhattacharyya, B., Rachel, R.A., Coppola, V., Tessarollo, L., Householder, D.B., Fletcher, C.F., Miller, R.J., Copeland, N.G., and Jenkins, N.A. (2002). Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420. https://doi.org/10.1038/ng1006
  108. Wood, M.A., Kaplan, M.P., Brensinger, C.M., Guo, W., and Abel, T. (2005). Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus 15, 610-621. https://doi.org/10.1002/hipo.20082
  109. Wrigley, J.D., Eckersley, K., Hardern, I.M., Millard, L., Walters, M., Peters, S.W., Mott, R., Nowak, T., Ward, R.A., Simpson, P.B., et al. (2011). Enzymatic characterisation of USP7 deubiquitinating activity and inhibition. Cell Biochem. Biophys. 60, 99. https://doi.org/10.1007/s12013-011-9186-4
  110. Xiao, N., Li, H., Luo, J., Wang, R., Chen, H., Chen, J., and Wang, P. (2012). Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits $TNF{\alpha}$-induced cancer cell migration. Biochem. J. 441, 979-987. https://doi.org/10.1042/BJ20111358
  111. Ye, Y. and Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755. https://doi.org/10.1038/nrm2780
  112. Yeates, E.F.A. and Tesco, G. (2016). The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J. Biol. Chem. 291, 15753-15766. https://doi.org/10.1074/jbc.M116.718023
  113. Yi, L., Cui, Y., Xu, Q., and Jiang, Y. (2016). Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol. Rep. 36, 2935-2945. https://doi.org/10.3892/or.2016.5099
  114. Yoon, K. and Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709. https://doi.org/10.1038/nn1475
  115. Yuasa-Kawada, J., Kinoshita-Kawada, M., Wu, G., Rao, Y., and Wu, J.Y. (2009). Midline crossing and Slit responsiveness of commissural axons require USP33. Nat. Neurosci. 12, 1087-1089. https://doi.org/10.1038/nn.2382
  116. Zhadanov, A.B., Provance, D.W., Jr., Speer, C., Coffin, J.D., Goss, D., Blixt, J., Reichert, C.M., and Mercer, J.A. (1999). Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr. Biol. 9, 880-882. https://doi.org/10.1016/S0960-9822(99)80392-3
  117. Zhang, C.W., Hang, L., Yao, T.P., and Lim, K.L. (2016). Parkin regulation and neurodegenerative disorders. Front. Aging Neurosci. 7, 248.
  118. Zhou, A., Lin, K., Zhang, S., Ma, L., Xue, J., Morris, S.A., Aldape, K.D., and Huang, S. (2017). Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 18, 1318-1330. https://doi.org/10.15252/embr.201643124

Cited by

  1. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer vol.14, 2020, https://doi.org/10.2147/dddt.s265793
  2. Protein Degradation and the Pathologic Basis of Phenylketonuria and Hereditary Tyrosinemia vol.21, pp.14, 2020, https://doi.org/10.3390/ijms21144996
  3. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases vol.21, pp.17, 2020, https://doi.org/10.3390/ijms21176335
  4. More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis vol.11, 2021, https://doi.org/10.3389/fcimb.2021.774613
  5. USP15: a review of its implication in immune and inflammatory processes and tumor progression vol.22, pp.1, 2020, https://doi.org/10.1038/s41435-021-00125-9
  6. Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases vol.69, 2020, https://doi.org/10.1016/j.arr.2021.101367
  7. Identification and validation of selective deubiquitinase inhibitors vol.28, pp.12, 2020, https://doi.org/10.1016/j.chembiol.2021.05.012