• Title/Summary/Keyword: tapped inductor

Search Result 53, Processing Time 0.023 seconds

Bidirectional Tapped-inductor Boost-Flyback Converter (비절연형 양방향 탭인덕터 부스트 플라이백 컨버터)

  • Kim, Hyun-Woo;Jeon, Young-Tae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.395-401
    • /
    • 2015
  • This paper proposes a new bidirectional DC-DC converter with high efficiency. The proposed converter is composed of a flyback and a tapped-inductor boost converter to satisfy extreme operating conditions with low cost. The outputs are connected in series to achieve a high-voltage step-up. In the reverse direction, the proposed converter has an extreme step-down voltage. In this study, the proposed converter was employed with a 100 W hardware prototype. To design the controller, a small-signal transfer function of the proposed converter is derived. For PV power conditioning systems, a maximum power point tracking method is applied with perturb and observe method. To verify the operation of the bidirectional power flow, the current controller is applied. All of the controllers are employed with a digital signal processor.

Digitally Controlled Interleaving Tapped-Inductor Boost Converter for Photovoltaic Module Integrated Converters (PV MIC)

  • Lee, Jye-June;Kim, Jitae;Bae, Hyunsu;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.74-75
    • /
    • 2010
  • As global warming due to burning fossil fuels and natural resource depletion issues have emerged, the development of renewable energy sources such as photovoltaics (PV) has been brought to recent interest. Amongst the vast efforts to harvest and convert solar energy into electricity, the module integrated converters (MIC) has become a worthy topic of research for grid-connected photovoltaic systems. Due to the required high-boosting qualities, only a restricted amount of DC/DC converter topologies can be applied to MICs. This paper investigates the possibility of a tapped-inductor boost converter as a candidate for PV MICs. A dual-inductor interleaving scheme operating slightly above the boundary of the two conduction modes (BCM) is suggested for reduction of input current ripple and minimization of component stress. A digital controller is used for implementation, assuring maximum power tracking and transfer while providing sufficient computational space for other grid connectivity applications, etc. For verification, a 200W converter is designed and simulated via computer software including component losses. High efficiency over a wide power range proves the feasibility of the proposed PV MIC system.

  • PDF

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

ZVS Center-Tapped Half-Bridge Zeta Converter with Reduced Output Filter Inductor Size

  • Lee, Jae-Bum;Park, Ki-Bum;Kim, Hyoung-Suk;Seong, Hyun-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.163-164
    • /
    • 2011
  • In this paper, a new half-bridge zeta converter employing a center-tapped rectifier is proposed. The proposed converter provides a bidirectional powering path in the rectifier. As a result, its improved rectifier voltage waveform reduces the output filter inductor size. Also, it maintains a wide ZVS range due to the characteristic of the conventional single-ended half-bridge zeta converter. The operational principles, the theoretical analysis, and the design considerations of the proposed converter are analyzed. To verify the performance of the proposed converter, experimental results from a 180W prototype are presented.

  • PDF

Improved KY Converter

  • Hwu, K.I.;Jiang, W.Z.;Chen, H.M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1578-1588
    • /
    • 2015
  • In this paper, an improved KY converter is presented, which is constructed mainly by one charge pump capacitor and one central-tapped coupling inductor. Besides, a passive clamping snubber is added to this converter to improve the efficiency above half load. As compared to the KY converter, the voltage conversion ratio of the proposed converter is upgraded significantly. In this paper, the basic operating principles and mathematical deductions of the proposed converter are described, along with some experimental results provided to demonstrate the feasibility and effectiveness of the proposed converter.

Analysis and Design of a High-Efficiency Boundary Conduction Mode Tapped-Inductor Boost LED Driver for Mobile Products

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.632-640
    • /
    • 2014
  • For low-power high-frequency LED driver applications in small form factor mobile products, a high-efficiency boundary conduction mode tapped-inductor boost converter is proposed. In the proposed converter, the switch and the diode achieve soft-switching, the diode reverse-recovery is alleviated, and the switching frequency is very insensitive to output voltage variations. The circuit is quantitatively characterized, and the design guidelines are presented. Experimental results from an LED backlight driver prototype for a 14 inch notebook computer are also presented.

A study on the CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC Converter with Phase Shift Control (위상이동 방식을 적용한 CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC 컨버터에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Bae, Jin-Yong;Kim, Pill-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.159-162
    • /
    • 2004
  • The paper proposes the coupled inductor rectifier of Three Level DC/DC converter CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) achieves Zero Voltage Switching (ZVS) for the switches in a wide load range and Zero Current Switching (ZCS) in a light load range. Advantages and disadvantages of this topology compared to the conventional Center Tapped TL Converter are discussed. Experimental evaluation results obtained on a 27V 60A DC/DC converter prototype for the 1.8kW 40kHz IGBT based experimental circuit.

  • PDF

Design of the Unmanned Solar Vehicle with Quick Response of Maximum Power Point Tracking (최대 전력점 추종의 속응성을 고려한 무인 태양광 자동차 시스템 설계)

  • Shin, Yesl;Lee, Kyo-Beum;Jeon, Yong-Ho;Song, Bong-Sob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2013
  • This paper proposes an improved Maximum Power Point Tracking method and design methods of unmanned solar vehicle system by parts of hardware, unmanned driving control and power conversion. The hardware design is offered on the weight reduction and structural reliability by using structural analysis software. The technique of curve fitting is applied to unmanned control system due to minimizing the vehicle's behavior. Furthermore, lateral controller applying actuator dynamics is robust enough to prevent performance degradation by measurement noise regarding position and heading angle. The power conversion system contains battery charger system and tapped-inductor boost converter. In the battery charger system, variable step-size MPPT is conducted for quick response of maximum power point tracking. The validity of the proposed algorithm are verified by simulations and experiments.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

A Three Level ZVZCS Phase-Shifted DC/DC Converter Using A Tapped Inductor And A Snubber Capacitor (탭-인덕터와 스너버-커패시터를 적용한 3 Level 영전압.영전류 스위칭 DC/DC 컨버터)

  • 김은수;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.209-216
    • /
    • 2001
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switchig (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7kW, 30kHz experimental prototype.

  • PDF