Improved KY Converter

K. I. Hwu ${ }^{\dagger}$, W. Z. Jiang* and H. M. Chen**

Abstract

In this paper, an improved KY converter is presented, which is constructed mainly by one charge pump capacitor and one central-tapped coupling inductor. Besides, a passive clamping snubber is added to this converter to improve the efficiency above half load. As compared to the KY converter, the voltage conversion ratio of the proposed converter is upgraded significantly. In this paper, the basic operating principles and mathematical deductions of the proposed converter are described, along with some experimental results provided to demonstrate the feasibility and effectiveness of the proposed converter.

Keywords: High step-up converter, KY converter, Charge pump, Central-tapped coupling inductor

	Nomenclature
S_{1}, S_{2}, S_{3}	Switches
D_{b}	Charge pump diode
D_{1}, D_{2}, D_{3}	Body diodes for S_{1}, S_{2}, S_{3}
D_{o}	Output diode
$D_{s n}$	Snubber diode
L_{p}	Primary self-inductance
L_{s}	Secondary self-inductance
L_{1}	Inductance equal to L_{p}
L_{2}	Inductance equal to L_{p} plus L_{s}
$L_{L K}$	Leakage inductance
C_{b}	Charge pump capacitor
C_{o}	Output capacitor
$C_{s n}$	Snubber capacitor
R_{o}	Output load resistor
N_{p}	Primary turns
N_{s}	Secondary turns
n	Turns ratio equal to N_{s} / N_{p}
V_{i}	Input voltage
V_{o}	Output voltage
$v_{d s 3}$	Voltage across S_{3}
$v_{D s n}$	Voltage across $D_{s n}$
$v_{g s 1}, v_{g s 2}, v_{g s 3}$	Gate-source signals for S_{1}, S_{2}, S_{3}
$v_{C s n, \text { max }}$	Maximum voltage across $C_{s n}$
$v_{C S n, \min }$	Minimum voltage across $C_{s n}$
$\Delta v_{C b}$	Voltage ripple on C_{b}
$\Delta v_{C b, \text { max }}$	Maximum value of $\Delta v_{C b}$
$\Delta v_{C o}$	Voltage ripple on C_{o}
$\Delta v_{C o, m a x}$	Maximum value of $\Delta v_{C o}$
$i_{L 1}$	Current flowing through L_{1}
$i_{L 2}$	Current flowing through L_{2}
$i_{L 2, \text { peak }}$	Peak-to-peak value of $i_{L 2}$ under BCM

[^0]| $i_{L K}$ | Current in $L_{L K}$ |
| :--- | :--- |
| $\Delta i_{L 2}$ | Current ripple in L_{2} |
| $I_{L B}$ | Average current in L_{p} under BCM |
| $I_{o, \text { rated }}$ | Rated output current |
| $I_{o, \text { min }}$ | Minimum output current |
| $I_{C b, D T s}$ | Average value of $i_{C b}$ during the turn-on period |
| $I_{C o, D T_{s}}$ | Average value of $i_{C o}$ during the turn-on period |
| $I_{L 1}$ | Average current in L_{1} |
| $I_{L 2}$ | Average current in L_{2} |
| $I_{L p, \text { max }}$ | Maximum value of $i_{L p}$ |
| $I_{L 1, \text { max }}$ | Maximum value of $i_{L 1}$ |
| $I_{L 2, \text { max }}$ | Maximum value of $i_{L 2}$ |
| T_{s} | Switching period |
| D | Duty cycle |
| φ | Flux in the central-tapped coupling inductor |
| \mathfrak{R} | Flux resistance of the core |
| f_{s} | Switching frequency |
| $L_{p _s-s h o r t}$ | Primary inductance with secondary side shorted |
| $L_{s, p-s h o r t}$ | Secondary inductance with primary side shorted |
| $K_{p s}$ | Coupling coefficient with primary side referred |
| | to secondary side |
| $K_{s p}$ | Coupling coefficient with secondary side |
| | referred to primary side |
| K | Geometric average value of $K_{p s}$ and $K_{s p}$ |
| $E_{L K}$ | Energy stored in $L_{L K}$ |
| M_{1}, M_{2}, M_{3} Gate driving signals for S_{1}, S_{2}, S_{3} | |
| $R_{o, \text { max }}$ | Maximum value of output load resistor |

1. Introduction

Because of the global warming, the demand of the green power has been increasing for decades. These kinds of green power facilities include solar cells, fuel cells, etc. In many applications, high voltage conversion converters play an important role in boosting the low output voltages of green power facilities to the high voltages which the loads need. Regarding the traditional non-isolated voltageboosting converters [1, 2], such as the traditional boost
converter and buck-boost converter, their voltage gains are not high enough. Up to now, many kinds of voltageboosting techniques have been presented, including several inductors which are magnetized and then pump the stored energy into the output with all inductors connected in series [3], coupled inductors with turns ratios [4-8, 10, 11, $15,19]$, voltage superposition based on switching capacitors [9, 13-20], auxiliary transformers with turns ratios [12], etc. In [8] and [10], the output terminal is floating, thereby increasing application complexity. In [4-11, 16, 17, 19] and [20], these converters contain too many components, thereby making the converters relatively complicated.

Based on the mentioned above, a novel step-up converter is presented, which is based on charge pump capacitor and one central-tap coupling inductor so as to improve the voltage conversion ratio of the KY converter. In this converter, a passive clamping snubber is used to decrease the voltage spike on the switch, and hence the switch with low turn-on resistance can be used. In this paper, the basic operating principles and the mathematical deductions will be described and some experimental results are provided to verify the effectiveness of the proposed topology.

2. Overall System Configuration

Fig. 1 shows the proposed high step-up converter. This converter is constructed by three switches S_{1}, S_{2} and S_{3} along with the corresponding body diodes D_{1}, D_{2} and D_{3}, one output diode D_{o}, one charge pump diode D_{b}, one charge pump capacitor C_{b}, one output capacitor C_{o}, one central-tapped coupling inductor established by one primary self-inductance L_{p} and one secondary self-inductance L_{s}, and one output load resistor R_{o}.

Fig. 1. Proposed high step-up converter.

3. Basic Operating Principles

Prior to this topic, there are some assumptions and symbols to be given:
(1) The voltage across the charge pump capacitor C_{b} is equal to the input voltage V_{i}.
(2) The value of the output capacitor C_{o} is larger enough to keep the output voltage constant V_{o} at some value.
(3) The input current is signified by i_{i}, the current in C_{b} is denoted by i_{b}, the current in L_{p} is represented by $i_{L p}$, the current in L_{s} is indicated by $i_{L s}$, and the current in C_{o} is described by $i_{C o}$.
(4) The flux in the central-tapped coupling inductor is represented by φ.
(5) The primary-side and secondary-side turns are signified by N_{p} and N_{s}, respectively, and n is defined to be N_{s} over N_{p}.
(6) The gate driving signals for S_{1}, S_{2} and S_{3} are $v_{g s 1}, v_{g s 2}$ and $v_{g s 3}$, respectively.
(7) The switching period is T_{s}.

The blanking times between S_{1} and S_{2} are negligible.
(8) As the converter operates in the continuous conduction mode (CCM) and the boundary conduction mode (BCM), the turn-on interval for S_{1} and S_{3} is $D T_{s}$, whereas the turn-on interval for S_{2} is $(1-D) T_{s}$.
(9) As the converter operates in the discontinuous conduction mode (DCM), the time required by L_{p} or L_{s} to release the stored energy to zero is denoted by $\Delta_{1} T_{s}$, and the time interval without any current in L_{p} or L_{s} is indicated by $\Delta_{2} T_{s}$, equal to $(1-D) T_{s}-\Delta_{1} T_{s}$.
(10) All components, including the switches, diodes, capacitors and central-tapped coupling inductor, are considered to be ideal.

Figs. 2 and 3 show the key waveforms for the converter operating in CCM and DCM, respectively.

Fig. 2. Illustrated waveforms for the converter operating in CCM.

Fig. 3. Illustrated waveforms for the converter operating in DCM.

3.1 Equivalent coupling inductor parameters

In the proposed converter, the currents in L_{p} and L_{s}, i_{p} and i_{s}, are pulsating for any operating mode, due to the discontinuity in i_{p} and i_{s}. Accordingly, for analysis convenience, some modifications to the parameters and currents of the coupling inductor are presented. First of all, let L_{p} be L_{1}, and then during the turn-off period of S_{3}, let the equivalent inductance L_{2} be L_{p} plus L_{s}, as shown in Fig. 4. Therefore,

$$
\left\{\begin{array}{l}
L_{1}=L_{p} \tag{1}\\
L_{2}=(n+1)^{2} L_{p}=(n+1)^{2} L_{1}
\end{array}\right.
$$

It is noted that how to determine which mode operates in is based on the flux in the central-tapped coupling inductor, φ, or based on N_{p}, N_{s}, i_{p} and i_{s}. Also, it is noted that the turns ratio n is equal to N_{s} divided by N_{p}. Accordingly, the following equations can be obtained :

Fig. 4. Equivalent inductance L_{2} equal to L_{p} plus L_{s} during the turn-off period.

$$
\left\{\begin{array}{l}
i_{L p}=\frac{\varphi \times \mathfrak{R}}{N_{p}} \quad, t_{0}<t<t_{1} \tag{2}\\
i_{L p}=\frac{\varphi \times \mathfrak{R}}{N_{p}+N_{s}}=\frac{\varphi \times \mathfrak{R}}{(n+1) N_{p}}, t_{1}<t<t_{0}+T_{s}
\end{array}\right.
$$

where \mathfrak{R} is the flux resistance of the core.
Based on the above mention, as shown in Fig. 5, if the number of turns during the magnetizing and demagnetizing periods is N_{p}, then the continuous current $i_{L 1}$ can be obtained. Likewise, if the number of turns during the magnetizing and demagnetizing periods is N_{p} plus N_{s}, then the continuous current $i_{L 2}$ can be obtained. The following equations show the results:

$$
\left\{\begin{array}{l}
i_{L 1}=\frac{\varphi \times \Re}{N_{p}} \tag{3}\\
i_{L 2}=\frac{\varphi \times \Re}{N_{p}+N_{s}}=\frac{\varphi \times \Re}{(n+1) N_{p}}
\end{array}\right.
$$

From (2) and (3), the relationship between $i_{L p}, i_{L 1}$ and $i_{L 2}$

Fig. 5. Relationship between $i_{L 1}, i_{L 2}$ and $i_{L p}$: (a) CCM; (b) DCM.
can be expressed to be

$$
\left\{\begin{array}{l}
i_{L p}=i_{L 1}, \quad t_{0}<t<t_{1} \tag{4}\\
i_{L p}=i_{L 2}, \quad t_{1}<t<t_{0}+T_{s}
\end{array}\right.
$$

In addition, in Fig. 5, $I_{L 1}$ and $I_{L 2}$ are the average currents of $i_{L 1}$ and $i_{L 2}$, respectively.

And, the relationship between $i_{L 1}$ and $i_{L 2}$, and the relationship between $I_{L 1}$ and $I_{L 2}$ can be represented by

$$
\left\{\begin{array}{l}
i_{L 1}=(n+1) i_{L 2} \tag{5}\\
I_{L 1}=(n+1) I_{L 2}
\end{array}\right.
$$

3.2 Steady-state analysis

After the above modifications mentioned in Sec. 3.1, the steady-state analysis, based on the small ripple approximation, follows.

3.2.1 State $1\left(t_{0}<t \leq t_{1}\right)$

As shown in Fig. 6, S_{1} and S_{3} are turned on but S_{2} is turned off. During this interval, D_{b} and D_{o} are reversebiased. At the same time, the voltage across L_{p} is the input voltage plus the voltage across C_{b}, namely, $2 V_{i}$, thereby causing L_{p} to be magnetized. Also, the energy required by the output is provided by C_{o}. Therefore, the corresponding equations can be obtained to be

$$
\left\{\begin{array}{l}
v_{L p}=2 V_{i} \tag{6}\\
i_{C o}=-\frac{V_{o}}{R_{o}}
\end{array}\right.
$$

Fig. 6. Current flow for mode 1.

3.2.2 State $2\left(t_{1}<t \leq t_{0}+T_{s}\right)$

As shown in Fig. 7, S_{1} and S_{3} are turned off but S_{2} is turned on. During this interval, D_{b} and D_{o} are forwardbiased. At the same time, the voltage across L_{2} is the input voltage minus the output voltage, namely, $V_{i}-V_{o}$. Hence, the voltage across L_{p} is equal to V_{i} minus V_{o} divided by $(n+1)$, thereby causing L_{p} to be demagnetized. Also, the energy required by the output is provided by the centraltapped coupling inductor which releases the stored energy.

Therefore, the corresponding equations can be obtained based on the small ripple approximation to be

$$
\left\{\begin{array}{l}
v_{L p}=\frac{v_{L 2}}{n+1}=\frac{V_{i}-V_{o}}{n+1} \tag{7}\\
i_{C o}=i_{L p}-\frac{V_{o}}{R_{o}}=i_{L 2}-\frac{V_{o}}{R_{o}}=I_{L 2}-\frac{V_{o}}{R_{o}}
\end{array}\right.
$$

By applying the voltage-second balance to L_{p}, one can obtain

$$
\begin{equation*}
2 V_{i} D+\frac{V_{i}-V_{o}}{n+1}(1-D)=0 \tag{8}
\end{equation*}
$$

Rearranging (8) yields the voltage conversion ratio:

$$
\begin{equation*}
\frac{V_{o}}{V_{i}}=\frac{1+D(2 n+1)}{1-D} \tag{9}
\end{equation*}
$$

Applying the current-second balance to C_{o}, one can obtain

$$
\begin{equation*}
\left(-\frac{V_{o}}{R_{o}}\right)+(1-D) I_{L 2}=0 \tag{10}
\end{equation*}
$$

Rearranging (10) yields the expression of $I_{L 2}$:

Fig. 7. Current flow for mode 2.

Fig. 8. Voltage conversion ratio comparison of three types of converters.

Fig. 9. Inductor current waveforms in BCM.

$$
\begin{equation*}
I_{L 2}=\frac{1}{1-D} \frac{V_{o}}{R_{o}} \tag{11}
\end{equation*}
$$

Via (9) under the same duty cycle, it is noted that in Fig. 8 , the proposed high step-up converter with a turns ratio set to one has a higher voltage conversion ratio than the other two, the traditional boost converter and the KY converter.

3.3 Boundary conduction mode condition

Fig. 9 shows the key waveforms for the converter operating in the boundary conduction mode (BCM). For this mode, the average current flowing through $L_{2}, I_{L B}$, can be expressed to be

$$
\begin{equation*}
I_{L B}=\frac{1}{1-D} \frac{V_{o}}{R_{o}} \tag{12}
\end{equation*}
$$

From state 2 mentioned in Sec. 3.2, since the current in $L_{2}, i_{L 2}$, corresponds to the current flowing through L_{p} plus L_{s} during the turn-off period of S_{1}, the half value of $i_{L 2, p e a k}$, $\Delta i_{L 2}$, can be expressed to be

$$
\begin{align*}
\Delta i_{L 2} & =\frac{1}{2} i_{L 2, \text { peak }} \\
& =\frac{(1-D) T_{s}}{2 L_{2}}\left(V_{o}-V_{i}\right) \tag{13}
\end{align*}
$$

where $i_{L 2 \text {,peak }}$ is the peak-to-peak value of $i_{L 2}$ under BCM.
Substituting (1) into (13) yields

$$
\begin{equation*}
\Delta i_{L 2}=\frac{(1-D) T_{s}}{2(n+1)^{2} L_{p}}\left(V_{o}-V_{i}\right) \tag{14}
\end{equation*}
$$

If $I_{L B}$ is equal to than $\Delta i_{L 2}$, then the converter operates in BCM. Accordingly, the following equation can be obtained to be

Fig. 10. Boundary condition of the proposed converter with turns ratio n equal to one.

$$
\begin{align*}
& I_{L B}=\Delta i_{L 2} \\
& \Rightarrow \frac{1}{(1-D) R_{o}} V_{o}=\frac{(1-D) T_{s}}{2(n+1)^{2} L_{p}}\left(V_{o}-V_{i}\right) \\
& \quad \Rightarrow \frac{L_{p}}{R_{o} T_{s}}=\frac{D(1-D)^{2}}{(n+1)[1+D(2 n+1)]} \tag{15}
\end{align*}
$$

Let

$$
\left\{\begin{array}{l}
K=\frac{L_{p}}{R_{o} T_{s}} \tag{16}\\
K_{c r i t}(D)=\frac{D(1-D)^{2}}{(n+1)[1+D(2 n+1)]}
\end{array}\right.
$$

Substituting (16) into (15), (15) can be rewritten to be

$$
\begin{equation*}
K=K_{c r i t}(D) \tag{17}
\end{equation*}
$$

Based on (17), if $K<K_{\text {crit }}(D)$, then the converter will operate in DCM; if $K>K_{\text {crit }}(D)$, then the converter will operate in CCM. Fig. 10 shows the boundary condition of the proposed converter with turns ratio n equal to one.

3.4 Passive clamping snubber

As generally recognized, the central-tapped coupling inductor inherently has the leakage inductance $L_{L K}$, since the coupling coefficient is not equal to one. Therefore, the voltage spike will be imposed on the switch. In the case, a passive clamping snubber, composed of one snubber diode $D_{s n}$ and one snubber capacitor $C_{s n}$, is used herein to suppress such a voltage spike. Fig. 11 shows the proposed converter with this passive clamping snubber. There are two operating states for the passive clamping snubber, to be described briefly as follows.

3.4.1 State 1

As S_{3} is turned off, the energy stored in $L_{L K}$ forces $D_{s n}$ and D_{o} to be turned on, as shown in Fig. 11. At the same time, $C_{s n}$ is charged. As soon as the energy stored is

Fig. 11. Proposed converter with a passive clamping snubber.

Fig. 12. Current flow of the passive clamping snubber in state 1.

Fig. 13. Current flow of the passive clamping snubber in state 2.
released entirely, the operating state goes to state 2.

3.4.2 State 2

As $D_{s n}$ is turned off and D_{o} is turned on, $C_{s n}$ is discharged as shown in Fig. 13. As soon as the voltage across $C_{s n}, v_{C s n}$, is reduced to the minimum value, $v_{C s n, m i n}$, which is equal to $V_{i}+\frac{V_{o}-V_{i}}{n+1}, D_{s n}$ is turned on, and this state comes to the end.

Fig. 14 shows the overall system configuration of the proposed converter. The feedback control loop contains one voltage divider, one analog-to-digital converter (ADC), one FPGA which is the control kernel, and three gate drivers. Besides, the gate driving signals M_{1}, M_{2} and M_{3} are created by FPGA and used to drive the switches S_{1}, S_{2} and S_{3}, respectively, after gate drivers.

Prior to designing the main power stage in Fig. 14, there are some specifications to be given as follows: (i) the input voltage V_{i} is 5 V ; (ii) the output voltage V_{o} is 48 V ; (iii) the rated output current $I_{o, \text { rated }}$ is 1 A ; (iv) the minimum output current $I_{o, \text { min }}$ is 0.15 A , which makes the converter operate in BCM ; (v) the switching frequency f_{s} is 50 kHz ; and (vi) the turns ratio is five.

Fig. 14. Overall system configuration.

3.5 Design of coupling inductor

According to the above specifications, the calculated duty cycle D can be obtained to be 0.417 as follows:

$$
\begin{equation*}
D=\frac{\frac{V_{o}}{V_{i}}-1}{2 n+1+\frac{V_{o}}{V_{i}}}=\frac{\frac{48}{5}-1}{(2 \times 5)+1+\frac{48}{5}} \cong 0.417 \tag{18}
\end{equation*}
$$

From the mention at the end of Sec. 3.3, if the converter operates in CCM above the minimum output current $I_{o, \text { min }}$, the primary-side inductance of the coupling inductor L_{p} must satisfy the following inequality:

$$
\begin{align*}
L_{p} & \geq \frac{D(1-D)^{2}}{(n+1)[1+D(2 n+1)]} R_{o, \max } T_{s} \\
& \Rightarrow L_{p} \geq \frac{D(1-D)^{2}}{(n+1)[1+D(2 n+1)]} \frac{V_{o}}{I_{o, \min }} \frac{1}{f_{s}} \tag{19}
\end{align*}
$$

Substituting the given specifications into (19), the value of L_{p} is calculated to be larger than $27.06 \mu \mathrm{H}$:

$$
\begin{align*}
L_{p} & \geq \frac{0.417(1-0.417)^{2}}{(5+1)[1+0.417(2 \times 5+1)]} \frac{48}{0.15} \frac{1}{50 \times 10^{3}} \tag{20}\\
& \Rightarrow L_{p} \geq 27.06 \mu \mathrm{H}
\end{align*}
$$

Finally, the value of L_{p} is chosen to be about $30 \mu \mathrm{H}$. At the same time, the value of the secondary-side inductance L_{s} is calculated to be $750 \mu \mathrm{H}$, as shown in the following equation:

$$
\begin{equation*}
L_{s}=n^{2} L_{p}=5^{2} \times 30 \times 10^{-6}=750 \mu \mathrm{H} \tag{21}
\end{equation*}
$$

Eventually, one PTS40/27/I 3C92 core, made by Ferroxcube Co., is chosen for the coupling inductor.

3.6 Design of charge pump capacitor

According to the basic formula for the capacitor, the
relationship between voltage ripple and capacitance during the discharge interval Δt can be expressed to be

$$
\begin{equation*}
\Delta v_{C b}=i_{C b} \frac{\Delta t}{C_{b}} \tag{22}
\end{equation*}
$$

where $\Delta v_{C b}$ is the voltage ripple on C_{b} and $i_{C b}$ is the current flowing through C_{b}.

Under the rated conditions, the average current during the turn-on period, $I_{C b, D T s}$ is equal to $I_{L 1, \text { rated }}$, namely

$$
\begin{equation*}
\Delta v_{C b, \max }=I_{C b, D T s} \frac{D T_{s}}{C_{b}}=I_{L 1, \text { rated }} \frac{D T_{s}}{C_{b}} \tag{23}
\end{equation*}
$$

where $\Delta v_{C b, \max }$ is the maximum value of $\Delta v_{C b}$.
If $\Delta v_{C b, \max }$ is smaller than 3% of V_{i}, then the inequality of the value of C_{b} can be obtained as follows:

$$
\begin{align*}
5 \times 3 \%>\Delta v_{C b, \max } & \Rightarrow 0.15>I_{L 1, \text { rated }} \frac{D T_{s}}{C_{b}} \\
& \Rightarrow C_{b}>I_{L 1, \text { rated }} \frac{D T_{s}}{0.15} \tag{24}\\
& \Rightarrow C_{b}>(n+1)\left(\frac{1}{1-D}\right) I_{o, \text { rated }} \frac{D}{0.15 \times f_{s}} \\
& \Rightarrow C_{b}>572 \mu \mathrm{~F}
\end{align*}
$$

Eventually, one $680 \mu \mathrm{~F}$ Rubycon capacitor is chosen for C_{b}.

3.7 Design of output capacitor

By the same way mentioned in Sec. 3.6, under the rated conditions, the average current during the turn-on period, $I_{C o, D T s}$ is equal to I_{o}, namely

$$
\begin{equation*}
\Delta v_{C o, \max }=I_{C o, D T s} \frac{D T_{s}}{C_{o}}=I_{o, \text { rated }} \frac{D T_{s}}{C_{o}} \tag{25}
\end{equation*}
$$

where $\Delta v_{C o, \max }$ is the maximum value of $\Delta v_{C o}$.
If $\Delta v_{C o, \max }$ is smaller than 0.2% of V_{i}, then the inequality of the value of C_{o} can be obtained as follows:

$$
\begin{align*}
& 48 \times 0.2 \%>\Delta v_{C o, \max } \\
& \Rightarrow 0.096>I_{o, \text { rated }} \frac{D T_{s}}{C_{o}} \tag{26}\\
& \Rightarrow C_{o}>I_{o, \text { rated }} \times \frac{D}{0.096 \times f_{s}} \\
& \Rightarrow C_{o}>869 \mu \mathrm{~F}
\end{align*}
$$

Finally, one $1000 \mu \mathrm{~F}$ Rubycon capacitor is chosen for C_{o}.

3.8 Design of C_{sn} in passive snubber

Prior to taking up this section, the primary-side leakage

Table 1. Measurements of the central-tapped coupling inductor

N_{p}	6 Turns
N_{s}	30 Turns
L_{p} with the secondary side opened	$29.8 \mu \mathrm{H}$
$\mathrm{L}_{\mathrm{p} \mathrm{s} \text {-short }}$ with the secondary side shorted	$0.16 \mu \mathrm{H}$
L_{s} with the primary side opened	$746 \mu \mathrm{H}$
$\mathrm{L}_{\mathrm{s} s \text { s-short }}$ with the primary side shorted	$5.5 \mu \mathrm{H}$

inductance $L_{L K}$ must be figured out first, the data shown in Table 1 is obtained based on a LCR meter, and hence the coupling coefficient of the primary side to the secondary side, $k_{p s}$, can be obtained to be

$$
\begin{equation*}
k_{p s}=\sqrt{1-\frac{L_{p_{-} s-\text { short }}}{L_{p}}}=\sqrt{1-\frac{0.16}{29.8}} \cong 0.997 \tag{27}
\end{equation*}
$$

By the similar way, the coupling coefficient of the secondary side to the primary side, $k_{s p}$ can be obtained:

$$
\begin{equation*}
k_{s p}=\sqrt{1-\frac{L_{s_{-}} p-\text { short }}{}} L_{s} \quad \sqrt{1-\frac{5.5}{746}} \cong 0.996 \tag{28}
\end{equation*}
$$

Hence, the coupling coefficient of the central-tapped coupling inductor, k, can be calculated out to be

$$
\begin{equation*}
k=\sqrt{0.997 \times 0.996} \cong 0.996 \tag{29}
\end{equation*}
$$

Accordingly, the primary-side leakage inductance $L_{L K}$ can be worked out to be

$$
\begin{equation*}
L_{L K}=(1-k) L_{p}=(1-0.996) \times 29.8 \times 10^{-6} \cong 0.12 \mu \mathrm{H} \tag{30}
\end{equation*}
$$

Sequentially, the value of the snubber capacitor $C_{s n}$ will be calculated out in the following. Under the condition that the converter operates at rated load, as soon as S_{1} is turned off, the energy stored in $L_{L K}$ can be expressed to be

$$
\begin{equation*}
E_{L K}=\frac{1}{2} L_{L K} I_{L p, \max }^{2} \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{L p, \max } & =I_{L 1, \max } \\
& =(n+1) I_{L 2, \max } \\
& =(n+1)\left[\frac{1}{1-D} I_{o, \text { rated }}+\frac{(1-D)}{2(n+1)^{2} L_{p} f_{s}}\left(V_{o}-V_{i}\right)\right] \\
& \cong 11.68 \mathrm{~A}
\end{aligned}
$$

Based on the (31) and (32), the value of $E_{L K}$ is $8.19 \mu \mathrm{~J}$.
Since $E_{L K}$ is to be released to $C_{s n}$ from the minimum voltage across $C_{s n}, v_{C s n, m i n}$, to the maximum voltage across $C_{s n,} v_{C s n, m a x}, E_{L K}$ also can be expressed to be

$$
\begin{equation*}
E_{L K}=\frac{1}{2} C_{s n}\left(v_{C s n, \max }^{2}-v_{C s n, \min }^{2}\right) \tag{33}
\end{equation*}
$$

Also,

$$
\begin{equation*}
v_{C s n, \text { min }}=V_{i}+\frac{V_{o}-V_{i}}{n+1}=5+\frac{48-5}{5+1} \cong 12.17 \mathrm{~V} \tag{34}
\end{equation*}
$$

Assuming that $v_{C s n, \text { max }}$ is smaller than 20 V , substituting the calculated values of $E_{L K}$ and $v_{C s n, \max }$ into (33), the inequality of the value of $C_{s n}$ can be obtained as follows:

$$
\begin{equation*}
C_{s n} \geq \frac{2 E_{L K}}{\left(v_{C s n, \max }^{2}-v_{C s n, \min }^{2}\right)}=\frac{2 \times 8.19 \times 10^{-6}}{20^{2}-12.17^{2}} \cong 65 \mathrm{nF} \tag{35}
\end{equation*}
$$

Finally, one 68 nF ceramic capacitor is chosen for $C_{s n}$.

4. Experimental Results

At light load, Fig. 15 shows the gate driving signals $v_{g s 1}$, $v_{g s 2}$ and $v_{g s 3}$ for S_{1}, S_{2} and S_{3}, respectively, and the voltage across $C_{b}, v_{C b}$; Fig, 16 shows the gate driving signals $v_{g s 1}$ and $v_{g s 2}$ for S_{1} and S_{2}, respectively, the current through L_{p}, $i_{L p}$, and the current through $L_{s}, i_{L s}$; Fig. 17 shows the gate driving signals $v_{g s 1}$ and $v_{g s 2}$ for S_{1} and S_{2}, respectively, the voltage across S_{3}, and the voltage across $D_{s n}$. At half load, Figs. 18 to 20 show the same measured items as Figs. 15 to 17; at rated load, Figs. 21 to 23 show the same measured items as Figs. 15 to 17 . In addition, Fig. 24 shows the curves of efficiency versus load current, with and without a passive snubber.

From Figs. 15, 18 and 21, it can be seen that the voltages across the energy-transferring capacitor C_{b} are kept near at 5 V . The differences between them are due to the voltage drops of parasitic components. From Figs. 16, 19 and 22, it can be seen that the more the load is, the higher the currents $i_{L p}$ and $i_{L s}$. From Figs. 17, 20 and 23, it can be seen

Fig. 15. Measured waveforms at light load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{g s 3}$; (4) $v_{C b}$.
that the more the load is, the higher the voltage spike, particularly at rated load, up to 20V. From Fig. 24, it can be seen that the efficiency is above 90.38% all over the load range and can be up to 92.29%. Besides, the efficiency below the load current of 0.4 A , the converter with the passive snubber has lower efficiency than the converter without the passive snubber. This is because the former has

Fig.16. Measured waveforms at light load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $i_{L p}$; (4) $i_{L s}$.

Fig. 17. Measured waveforms at light load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{d s 3}$; (4) $v_{D s n}$.

Fig. 18. Measured waveforms at half load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{g s 3}$; (4) $v_{C b}$.
additional conduction loss due to the diode $D_{s n}$. However, as the load is from light load to rated load, the former has better performance of efficiency than the latter. This is because the voltage stress in the former is lower than that in the latter. Hence, the turn-on resistance of the switch S_{3} of the former is lower than that of the latter, implying that the former has lower conduction loss than the latter.

Fig. 19. Measured waveforms at half load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $i_{L p}$; (4) $i_{L s}$.

Fig. 20. Measured waveforms at half load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{d s 3}$; (4) $v_{D s n}$.

Fig. 21. Measured waveforms at rated load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{g s 3}$; (4) $v_{C b}$.

Fig. 22. Measured waveforms at rated load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $i_{L p}$; (4) $i_{L s}$.

Fig. 23. Measured waveforms at rated load: (1) $v_{g s 1}$; (2) $v_{g s 2}$; (3) $v_{d s 3}$; (4) $v_{D s n}$.

Fig. 24. Efficiency versus load.

5. Conclusion

A novel step-up converter is presented herein, which is based on coupling inductor and one central-tap coupling inductor so as to improve the voltage conversion ratio of the KY converter. In the proposed converter, a passive clamping snubber is used to decrease the voltage spike on the switch so as to increase the efficiency of this converter above half load. Besides, such a converter is simple in structure and easy to control, and hence suitable for

Table 3. Comparison between the proposed converter and the converters shown in the References, in terms of voltage conversion ratio, component number, switch voltage stress, output inductor and floating output

Ref.	Voltage conversion ratio	Component number	Switch voltage stress	Output inductor	Floating output
[3]	$\frac{1}{(1-D)^{2}}$	8	$V_{d s 1}=\frac{V_{i}}{1-D}, \quad V_{d s 2}=V_{d s 3}=\frac{V_{i}}{(1-D)^{2}}$	No	No
[4]	$\frac{1+n}{1-D}$	10	$V_{d s 1}=n V_{i}, \quad V_{d s 2}=\frac{n D}{1-D} V_{i}$	No	No
[5]	$\frac{2+n}{1-D}$	10	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[6]	$\frac{1+n}{1-D}$	15	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[7]	$\frac{2}{1-D}+n D$	13	$V_{s 1}=V_{s 2}=\frac{V_{o}}{2}-\frac{n D V_{i}}{2}$	No	No
[8]	$\frac{1+D+n D}{1-D}$	9	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	Yes
[9]	$\frac{2(1+n D)}{1-D}$	10	$V_{d s 1}=\frac{1+n D}{1-D} V_{i}$	No	Yes
[10]	$\frac{2+n D}{1-D}$	14	$V_{d s 1}=\frac{V_{i}}{1-D}$	No	No
[11]	$1+D$	6	$V_{d s 1}=2 V_{i}, V_{d s 2}=V_{i}$	Yes	No
[12]	$\frac{2-D}{1-D}$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	Yes	No
[13]	$\frac{2-D}{1-D}$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	Yes	No
[14]	$\frac{2}{1-D}+n$	8	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
[15]	Type 1: $\frac{3-D}{1-D}$ Type 2: $\frac{2}{1-D}$ Type 3: $\frac{3-2 D}{1-D}$	10	Type 1: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{1+D}{1-D} V_{i}$ Type 2: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{1+D}{1-D} V_{i}$ Type 3: $\quad V_{d s 1}=V_{d s 2}=V_{i}, \quad V_{d s 3}=\frac{2-D}{1-D} V_{i}$	No	No
[16]	$\frac{2 n D}{1-D}+1$	11	$V_{d s 1}=V_{i}, \quad V_{d s 2}=V_{i}, \quad V_{d s 3}=\left(\frac{3 D-1}{1-D}\right) V_{i}$	No	No
[17]	Type 1: 2D Type 2: 2D	8	Type 1: $V_{d s 1}=V_{i}, \quad V_{d s 2}=V_{i}, V_{d s 3}=V_{i}, V_{d s 4}=V_{i}$ Type 2: $V_{d s 1}=V_{i}, \quad V_{d s 2}=V_{i}, \quad V_{d s 3}=V_{i}, \quad V_{d s 4}=V_{i}$	Yes	No
[18]	$\frac{n+1}{1-D}$	10	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
[19]	$\frac{2 n+1}{1-D}$	11	$V_{d s 1}=V_{d s 2}=\frac{V_{i}}{1-D}$	No	No
Proposed	$\frac{2+n-D}{(1-D)^{2}}$	10	$V_{d s 1}=\left[\frac{2+n-D}{(1-D)^{2}}\right] V_{i}$	No	No

industrial applications.

References

[1] R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics," $2^{\text {nd }}$ ed., Norwell: KLuwer Academic Publishers, 2001.

Table 2 makes a comparison between some converters shown in the references in terms of voltage conversion ratio, component number, and switch voltage stress. From this table, it can be seen that the proposed converter a relatively good voltage conversion ratio with a reasonable component number and acceptable switch voltage stresses.

Appendix

2] Abrahan I. Pressman, "Switching Power Supply Design," $2^{\text {nd }}$ ed., New York: McGraw-Hill, 1998.
[3] B. R. Lin, F. Y. Hsieh and J. J. Chen, "Analysis and implementation of a bidirectional converter with high converter ratio," IEEE ICIT'08, pp.1-6, 2008.
[4] K. B. Park, G. W. Moon and M. J. Youn, "Non-
isolated high step-up stacked converter based on boostintegrated isolated converter," IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577-587, 2011.
[5] Y. Deng, Q. Rong, Y. Zhao, J. Shi and X. He, "Single switch high step-up converters with built-in transformer voltage multiplier cell," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3557-3567, 2012.
[6] Wuhua Li, Weichen Li, Xiangning He, D. Xu and Bin Wu, "General derivation law of nonisolated high-step-up interleaved converters with built-in transformer," IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1650-1661, 2012.
[7] C. M. Lai, C. T. Pan and M. C. Cheng, "Highefficiency modular high step-up interleaved boost converter for dc-microgrid applications," IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp.161-171, 2012.
[8] R. J. Wai and R. Y. Duan, "High-efficiency power conversion for low power fuel cell generation system," IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 847-856, 2005.
[9] F. L. Luo, "Analysis of super-lift luo-converters with capacitor voltage drop," IEEE ICIEA'08 pp. 417-422, 2008.
[10] L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, "Novel high step-up DC-DC converter with coupledinductor and voltage-doubler circuits," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4196-4206, 2011.
[11] C. T. Pan and C. M. Lai, "A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications," IEEE Transactions on Industrial Electronics, vol. 57, no. 6, 2010, pp. 19982006.
[12] K. I. Hwu and Y. T. Yau, "KY converter and its derivatives," IEEE Transactions on Power Electronics, vol. 57, no. 6, pp. 128-137, 2009.
[13] K. I. Hwu and Y. T. Yau, "A KY boost converter," IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2699-2703, 2010.
[14] K. I. Hwu, K. W. Huang and W. C. Tu, "Step-up converter combining KY and buck-boost converters," IET Electronics Letters, vol. 47, no. 12, pp. 722-724, 2011.
[15] K. I. Hwu and Y. T. Yau, "Inductor-coupled KY boost converter," IET Electronics Letters, vol. 46, no. 24, pp. 1624-1626, 2010.
[16] K.I. Hwu and W.C. Tu, "Voltage-boosting converters with energy pumping," IET Power Electronics, vol. 5, no. 2, pp. 185-195, 2012.
[17] K.I. Hwu, Y.T. Yau and Y.H. Chen, "A novel voltageboosting converter with passive voltage clamping," IEEE ICSET'08, pp. 351-354, 2008.
[18] K. I. Hwu and Y. T. Yau, "Two types of KY buckboost converters," IEEE Transactions on Industrial

Electronics, vol. 56, no. 8, pp. 2970-2980, 2009.
[19] K. I. Hwu and Y. T. Yau, "Voltage-boosting converter based on charge pump and coupling inductor with passive voltage clamping," IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 1719-1727, 2010.
[20] K.I. Hwu, W.C. Tu and J.J. Shieh, "A novel voltageboosting converter based on charge pump and one inductor inserted," IEEE PEDS'11, pp. 492-495, 2011.

K. I. Hwu He was born in Taichung, Taiwan, on August 24, 1965. He received the B.S. and Ph.D. degrees in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, in 1995 and 2001, respectively. From 2001 to 2002, he was the Team Leader of the Voltage-Regulated Module (VRM) at AcBel Company. From 2002 to 2004, he was a Researcher at the Energy and Resources Laboratories, Industrial Technology Research Institute. He is currently a Professor at the Institute of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan, where he was the Chairman of the Center for Power Electronics Technology from 2005 to 2006. His current research interests include power electronics, converter topology, and digital control. Dr. Hwu has been a member of the Program Committee of the IEEE Applied Power Electronics Conference and Exposition since 2005. He has also been a member of the Technical Review Committee of the Bureau of Standards, Metrology, and Inspection since 2005. Since 2008, he has been a member of the IET.

W. Z. Jiang He was born in Changhua, Taiwan, on May 09, 1989. He received the B.S. and M.S. degrees in electrical engineering from National Taipei University of Technology, Taipei, Taiwan, in 2011 and 2013, respectively. Currently, he is working toward the Ph.D. degree at the same university. His fields of research interests include power electronics, converter topology, and digital control.

H. M. Chen He received the M.S degree in electrical engineering from National Taipei University of Technology, Taipei, Taiwan. His research interest is power electronics.

[^0]: \dagger Corresponding Author: Dept. of Electrical Engineering, National Taipei University of Technology, Taiwan. (eaglehwu@ntut.edu.tw)

 * Dept. of Electrical Engineering, National Taipei University of Technology, Taiwan. (newjerusalem333@gmail.com, t9318083@ ntut.edu.tw)
 Received: October 7, 2014; Accepted: February 16, 2015

