• Title/Summary/Keyword: tangent bundles

Search Result 15, Processing Time 0.024 seconds

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Park, Jeong-Hyeong;Sekigawa, Kouei
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1255-1265
    • /
    • 2009
  • We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.

COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES

  • Uday Chand De ;Mohammad Nazrul Islam Khan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1233-1247
    • /
    • 2023
  • The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.

ON DEFORMED-SASAKI METRIC AND HARMONICITY IN TANGENT BUNDLES

  • Boussekkine, Naima;Zagane, Abderrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.1019-1035
    • /
    • 2020
  • In this paper, we introduce the deformed-Sasaki metric on the tangent bundle TM over an m-dimensional Riemannian manifold (M, g), as a new natural metric on TM. We establish a necessary and sufficient conditions under which a vector field is harmonic with respect to the deformed-Sasaki Metric. We also construct some examples of harmonic vector fields.

PROLONGATION OF G-STRUCTURES IMMERSED IN THE GOLDEN STRUCTURE TO TANGENT BUNDLES OF HIGHER ORDER

  • MANISHA M. KANKAREJ;GEETA VERMA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1039-1049
    • /
    • 2024
  • The aim of the present paper is to study the lifts of a golden structure to tangent bundles of order r. We proved that r-lift of the golden structure F in the tangent bundle of order r is also a golden structure. We have also proved some theorems on the projection tensor in the tangent bundle of order r. Later we have established prolongations of G-structures immersed in the golden structure to the tangent bundle of order r and 2. Finally, we constructed few examples of the golden structure that admit an almost para contact structure on the tangent bundle of order 3 and 4.

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.

SECOND ORDER TANGENT VECTORS IN RIEMANNIAN GEOMETRY

  • Kwon, Soon-Hak
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.959-1008
    • /
    • 1999
  • This paper considers foundational issues related to connections in the tangent bundle of a manifold. The approach makes use of second order tangent vectors, i.e., vectors tangent to the tangent bundle. The resulting second order tangent bundle has certain properties, above and beyond those of a typical tangent bundle. In particular, it has a natural secondary vector bundle structure and a canonical involution that interchanges the two structures. The involution provides a nice way to understand the torsion of a connection. The latter parts of the paper deal with the Levi-Civita connection of a Riemannian manifold. The idea is to get at the connection by first finding its.spary. This is a second order vector field that encodes the second order differential equation for geodesics. The paper also develops some machinery involving lifts of vector fields form a manifold to its tangent bundle and uses a variational approach to produce the Riemannian spray.

  • PDF