• Title/Summary/Keyword: tail asymptotics

Search Result 7, Processing Time 0.017 seconds

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.343-350
    • /
    • 2015
  • We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

CLOSURE PROPERTY AND TAIL PROBABILITY ASYMPTOTICS FOR RANDOMLY WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES WITH HEAVY TAILS

  • Dindiene, Lina;Leipus, Remigijus;Siaulys, Jonas
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1879-1903
    • /
    • 2017
  • In this paper we study the closure property and probability tail asymptotics for randomly weighted sums $S^{\Theta}_n={\Theta}_1X_1+{\cdots}+{\Theta}_nX_n$ for long-tailed random variables $X_1,{\ldots},X_n$ and positive bounded random weights ${\Theta}_1,{\ldots},{\Theta}_n$ under similar dependence structure as in [26]. In particular, we study the case where the distribution of random vector ($X_1,{\ldots},X_n$) is generated by an absolutely continuous copula.

A NOTE ON THE SEVERITY OF RUIN IN THE RENEWAL MODEL WITH CLAIMS OF DOMINATED VARIATION

  • Tang, Qihe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.663-669
    • /
    • 2003
  • This paper investigates the tail asymptotic behavior of the severity of ruin (the deficit at ruin) in the renewal model. Under the assumption that the tail probability of the claimsize is dominatedly varying, a uniform asymptotic formula for the tail probability of the deficit at ruin is obtained.

ASYMPTOTIC RUIN PROBABILITIES IN A GENERALIZED JUMP-DIFFUSION RISK MODEL WITH CONSTANT FORCE OF INTEREST

  • Gao, Qingwu;Bao, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2014
  • This paper studies the asymptotic behavior of the finite-time ruin probability in a jump-diffusion risk model with constant force of interest, upper tail asymptotically independent claims and a general counting arrival process. Particularly, if the claim inter-arrival times follow a certain dependence structure, the obtained result also covers the case of the infinite-time ruin probability.

AN APPROXIMATION FOR THE DISTRIBUTION OF THE NUMBER OF RETRYING CUSTOMERS IN AN M/G/1 RETRIAL QUEUE

  • Kim, Jeongsim;Kim, Jerim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.405-411
    • /
    • 2014
  • Queueing systems with retrials are widely used to model many problems in call centers, telecommunication networks, and in daily life. We present a very accurate but simple approximate formula for the distribution of the number of retrying customers in the M/G/1 retrial queue.

LARGE DEVIATIONS FOR A SUPER-HEAVY TAILED 𝛽-MIXING SEQUENCE

  • Yu Miao;Qing Yin
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.853-874
    • /
    • 2024
  • Let {X, Xn; n ≥ 1} be a 𝛽-mixing sequence of identical nonnegative random variables with super-heavy tailed distributions and Sn = X1 + X2 + · · · + Xn. For 𝜀 > 0, b > 1 and appropriate values of x, we obtain the logarithmic asymptotics behaviors for the tail probabilities ℙ(Sn > e𝜀nx) and P(Sn > e𝜀bn). Moreover, our results are applied to the log-Pareto distribution and the distribution for the super-Petersburg game.