CLOSURE PROPERTY AND TAIL PROBABILITY ASYMPTOTICS FOR RANDOMLY WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES WITH HEAVY TAILS

Lina Dindiené, Remigiuus Leipus, and Jonas Šiaulys

Abstract

In this paper we study the closure property and probability tail asymptotics for randomly weighted sums $S_{n}^{\Theta}=\Theta_{1} X_{1}+\cdots+\Theta_{n} X_{n}$ for long-tailed random variables X_{1}, \ldots, X_{n} and positive bounded random weights $\Theta_{1}, \ldots, \Theta_{n}$ under similar dependence structure as in [26]. In particular, we study the case where the distribution of random vector $\left(X_{1}, \ldots, X_{n}\right)$ is generated by an absolutely continuous copula.

1. Introduction

Let X_{1}, \ldots, X_{n} be real-valued random variables (r.v.s) with corresponding distributions F_{1}, \ldots, F_{n} and let $\Theta_{1}, \ldots, \Theta_{n}$ be arbitrarily dependent positive bounded r.v.s, independent of X_{1}, \ldots, X_{n}. Denote the randomly weighted sum by

$$
\begin{equation*}
S_{n}^{\Theta}:=\Theta_{1} X_{1}+\cdots+\Theta_{n} X_{n} \tag{1.1}
\end{equation*}
$$

The primary interest of this paper is to focus on the following two questions. First is the closure property of the sum S_{n}^{Θ}, where the primary (heavy-tailed) r.v.s X_{1}, \ldots, X_{n} possess some general dependence structure. More precisely, the question is the following: given that distributions F_{1}, \ldots, F_{n} are from the long-tailed distribution class (denoted by \mathscr{L}, see Section 2), whether the distribution function (d.f.) of sum S_{n}^{Θ} belongs to the same class \mathscr{L} ? Second question we address here, is the asymptotic equivalence of the tail probabilities $\mathrm{P}\left(S_{n}^{\Theta}>x\right)$ and $\mathrm{P}\left(S_{n}^{\Theta+}>x\right)$, where $S_{n}^{\Theta+}:=\Theta_{1} X_{1}^{+}+\cdots+\Theta_{n} X_{n}^{+}$, i.e., for a given dependence structure among the heavy-tailed r.v.s X_{1}, \ldots, X_{n}, whether it holds that

$$
\begin{equation*}
\mathrm{P}\left(S_{n}^{\Theta}>x\right) \sim \mathrm{P}\left(S_{n}^{\Theta+}>x\right) \tag{1.2}
\end{equation*}
$$

[^0]for $x \rightarrow \infty$? Relation (1.2) is not only of theoretical interest but also has practical implications as it allows, for large x, to replace the sum of real-valued r.v.s by much easier to handle sum of r.v.s concentrated on $[0, \infty)$.

The first problem in the case $\Theta_{1}=\cdots=\Theta_{n}=1$ reduces to the question of convolution closure for the class \mathscr{L}, which was studied by Embrechts and Goldie ([5], Theorem 3(b)) when $n=2$ (in fact, they proved the closure property for more general class \mathscr{L}_{γ}) and by Ng et al. [17]. The closure property for some other heavy-tailed classes was considered in $[2,6,8,12,18,23,24]$. The closure property for randomly weighted sums S_{n}^{Θ} was studied in [3,26]. The probability tail asymptotics for sums S_{n}^{Θ} of independent heavy tailed r.v.s X_{1}, \ldots, X_{n} with $\Theta_{1}, \ldots, \Theta_{n}$ being nonnegative bounded r.v.s were investigated in $[3,18-20,25]$, among others; some dependence among X_{1}, \ldots, X_{n} was allowed in $[4,7,11,13$, 21], etc. We note that both mentioned questions are closely related: the proof of asymptotic equivalence (1.2) is based on the uniform closure property (see Lemma 3.1 and Remark 5.1 below).

Recently, Yang et al. [26] considered the randomly weighted sum S_{2}^{Θ} under the following dependence structure between real-valued r.v.s X_{1} and X_{2} :

$$
\begin{align*}
& \mathrm{P}\left(X_{2}>x \mid X_{1}=y\right) \sim h_{1}(y) \overline{F_{2}}(x), \\
& \mathrm{P}\left(X_{1}>x \mid X_{2}=y\right) \sim h_{2}(y) \overline{F_{1}}(x), x \rightarrow \infty \tag{1.3}
\end{align*}
$$

uniformly in $y \in \mathbb{R}$, where $h_{k}: \mathbb{R} \mapsto(0, \infty), k=1,2$, are measurable functions. Such a dependence structure, proposed in [1], can be easily checked for some well-known bivariate copulas, allowing both positive and negative dependence, see, e.g., [1], [14], [26]. The main result of [26] is the following theorem.

Theorem 1.1 ([26]). Assume that X_{1}, X_{2} are real-valued r.v.s with distributions $F_{k} \in \mathscr{L}, k=1,2$, satisfying relation (1.3); Θ_{1}, Θ_{2} are arbitrarily dependent, but independent of X_{1}, X_{2}, and such that $\mathrm{P}\left(a \leq \Theta_{k} \leq b\right)=1, k=1,2$, with some constants $0<a \leq b<\infty$. Then the distribution of S_{2}^{Θ} is in \mathscr{L} and relation (1.2) holds.

The goal of the present paper is to extend the result on the closure property and tail asymptotics of randomly weighted sums S_{n}^{Θ} under similar dependence structure to (1.3) for any $n \geq 2$. Also, we study the case where the distribution of random vector $\left(X_{1}, \ldots, X_{n}\right)$ is generated by an absolutely continuous copula. In particular, we show that, if the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is generated by the FGM copula, $F_{k} \in \mathscr{L} \cap \mathscr{D}$ (see Section 2), $k=1, \ldots, n$, and $\mathrm{P}(0<\Theta \leq$ $b)=1, k=1, \ldots, n$, then the probabilities $\mathrm{P}\left(S_{n}^{\Theta}>x\right)$ and $\mathrm{P}\left(S_{n}^{\Theta+}>x\right)$ are asymptotically equivalent to $\sum_{k=1}^{n} \mathrm{P}\left(\Theta_{k} X_{k}>x\right)$.

The rest of the paper is organized as follows. Section 2 presents the main results of the paper. Their proofs are given in Section 3. Section 4 focuses to the dependence generated by a copula, and, particularly, by the FGM copula. Auxiliary results are given in Section 5.

2. Main results

Throughout this paper, all limit relationships hold for x tending to ∞ unless stated otherwise. For two positive functions $u(x)$ and $v(x)$, we write $u(x) \sim$ $v(x)$ if $\lim u(x) / v(x)=1$; write $u(x) \lesssim v(x)$ if $\lim \sup u(x) / v(x) \leq 1$. For a real number x, write $x^{+}=\max \{x, 0\}$. The indicator function of an event A is denoted by $\mathbb{1}_{A}$. For any distribution F, define its tail distribution by $\bar{F}=1-F$.

A distribution F is called long-tailed, denoted by $F \in \mathscr{L}$, if $\bar{F}(x+y) \sim \bar{F}(x)$ holds for every fixed y; is called dominatedly varying-tailed, denoted by $F \in \mathscr{D}$, if $\limsup _{x \rightarrow \infty} \bar{F}(x y) / \bar{F}(x)<\infty$ for any $y \in(0,1)$; is said to have a consistently varying tail, denoted by $F \in \mathscr{C}$, if $\lim _{y} \nearrow_{1} \lim _{\sup _{x \rightarrow \infty}} \bar{F}(x y) / \bar{F}(x)=1$. A d.f. F supported on $[0, \infty)$ belongs to the class \mathscr{S} (is subexponential) if $\lim _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)}=2$, where $F_{1} * F_{2}$ denotes the convolution of F_{1} with F_{2}. In the case where d.f. F is concentrated on \mathbb{R}, we write $F \in \mathscr{S}$ if $F^{+}(x)=F(x) \mathbf{1}_{\{x \geq 0\}}$ belongs to \mathscr{S}.

Let $n \geq 2$ be an integer. Consider the real-valued r.v.s X_{1}, \ldots, X_{n} with corresponding distributions F_{1}, \ldots, F_{n}, such that $\overline{F_{k}}(x)>0$ for $k=1, \ldots, n$, and assume the following dependence structures.

Assumption A. For each $k=2, \ldots, n$ relation

$$
\begin{equation*}
\mathrm{P}\left(X_{k}>x \mid X_{1}=y_{1}, \ldots, X_{k-1}=y_{k-1}\right) \sim g_{k}\left(y_{1}, \ldots, y_{k-1}\right) \overline{F_{k}}(x) \tag{2.1}
\end{equation*}
$$

holds uniformly for $\left(y_{1}, \ldots, y_{k-1}\right) \in \mathbb{R}^{k-1}$, i.e.,

$$
\lim _{x \rightarrow \infty} \sup _{\left(y_{1}, \ldots, y_{k-1}\right) \in \mathbb{R}^{k-1}}\left|\frac{\mathrm{P}\left(X_{k}>x \mid X_{1}=y_{1}, \ldots, X_{k-1}=y_{k-1}\right)}{g_{k}\left(y_{1}, \ldots, y_{k-1}\right) \overline{F_{k}}(x)}-1\right|=0
$$

where $g_{k}: \mathbb{R}^{k-1} \mapsto \mathbb{R}_{+}:=(0, \infty), k=2, \ldots, n$, are measurable functions.
Assumption B. For each $k=2, \ldots, n$ relation

$$
\begin{equation*}
\mathrm{P}\left(\sum_{i=1}^{k-1} w_{i} X_{i}>x \mid X_{k}=y\right) \sim h_{k}^{(w)}(y) \mathrm{P}\left(\sum_{i=1}^{k-1} w_{i} X_{i}>x\right) \tag{2.2}
\end{equation*}
$$

holds uniformly for $y \in \mathbb{R}$ and $\bar{w}_{k-1}:=\left(w_{1}, \ldots, w_{k-1}\right) \in[a, b]^{k-1}$, with some positive constants $0<a \leq b<\infty$, i.e.,

$$
\lim _{x \rightarrow \infty} \sup _{y \in \mathbb{R}} \sup _{\bar{w}_{k-1} \in[a, b]^{k-1}}\left|\frac{\mathrm{P}\left(\sum_{i=1}^{k-1} w_{i} X_{i}>x \mid X_{k}=y\right)}{h_{k}^{(w)}(y) \mathrm{P}\left(\sum_{i=1}^{k-1} w_{i} X_{i}>x\right)}-1\right|=0
$$

where $h_{k}^{(w)} \equiv h_{k}\left(w_{1}, \ldots, w_{k-1}, \cdot\right): \mathbb{R} \mapsto \mathbb{R}_{+}, k=1, \ldots, n$, are measurable functions.

If, for some $i \in\{1, \ldots, k-1\}, y_{i}=y_{i}^{*}$ in (2.1) is not possible value of X_{i}, i.e., $\mathrm{P}\left(X_{i} \in \Delta\right)=0$ for some open interval containing y_{i}^{*}, then the conditional probability in Assumption A is understood as unconditional and therefore $g_{k}\left(y_{1}, \ldots, y_{i}^{*}, \ldots, y_{k-1}\right)=1$ for such y_{i}. The same agreement holds for (2.2).

Clearly, the uniformity in (2.1) and (2.2) implies that $\mathrm{E} g_{k}\left(X_{1}, \ldots, X_{k-1}\right)=$ $E h_{k}^{(w)}\left(X_{k}\right)=1$ for $k=2, \ldots, n$.

Our first main result is the following theorem.
Theorem 2.1. Let X_{1}, \ldots, X_{n} be real-valued r.v.s satisfying Assumptions A, B, and let $\Theta_{1}, \ldots, \Theta_{n}$ be random weights, independent of X_{1}, \ldots, X_{n}, such that $\mathrm{P}\left(a \leq \Theta_{k} \leq b\right)=1, k=1, \ldots, n$. If $F_{k} \in \mathscr{L}$ for all $k=1, \ldots, n$, then d.f. $\mathrm{P}\left(S_{n}^{\Theta} \leq x\right)$ belongs to \mathscr{L}.

In order to obtain our second main result we have to strengthen the assumption of dependence from Assumptions A, B to the following:

Assumption C. For arbitrary nonempty sets of indices $I=\left\{k_{1}, \ldots, k_{m}\right\} \subset$ $\{1,2, \ldots, n\}$ and $J=\left\{r_{1}, \ldots, r_{p}\right\} \subset\{1,2, \ldots, n\} \backslash I$, relation

$$
\begin{aligned}
& \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x \mid X_{r_{1}}=y_{r_{1}}, \ldots, X_{r_{p}}=y_{r_{p}}\right) \\
\sim & h_{I, J}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{p}}\right) \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)
\end{aligned}
$$

holds uniformly for $\left(y_{r_{1}}, \ldots, y_{r_{p}}\right) \in \mathbb{R}^{p}$ and $\left(w_{k_{1}}, \ldots, w_{k_{m}}\right) \in[a, b]^{m}, 0<$ $a \leq b<\infty$, with some measurable function $h_{I, J}^{(w)}: \mathbb{R}^{p} \mapsto \mathbb{R}_{+}$, such that $h_{I, J}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{p}}\right)$ is bounded uniformly in $w_{k} \in[a, b], k \in I$ and $\left(y_{r_{1}}, \ldots, y_{r_{p}}\right) \in$ \mathbb{R}^{p}.

Clearly, Assumption C implies both Assumptions A and B with $g_{k}\left(y_{1}, \ldots\right.$, $\left.y_{k-1}\right) \equiv h_{\{k\},\{1, \ldots, k-1\}}^{(w)}\left(y_{1}, \ldots, y_{k-1}\right)$ and $h_{k}^{(w)}(y) \equiv h_{\{1, \ldots, k-1\},\{k\}}^{(w)}(y), k=$ $2, \ldots, n$.

Theorem 2.2. Let X_{1}, \ldots, X_{n} be real-valued r.v.s satisfying Assumption C and let $\Theta_{1}, \ldots, \Theta_{n}$ be random weights, independent of X_{1}, \ldots, X_{n}, such that $\mathrm{P}\left(a \leq \Theta_{k} \leq b\right)=1, k=1, \ldots, n$. If $F_{k} \in \mathscr{L}$ for all $k=1, \ldots, n$, then

$$
\begin{equation*}
\mathrm{P}\left(S_{n}^{\Theta}>x\right) \sim \mathrm{P}\left(S_{n}^{\Theta+}>x\right) \sim \mathrm{P}\left(M_{n}^{\Theta}>x\right) \tag{2.3}
\end{equation*}
$$

where $M_{n}^{\Theta}:=\max \left\{S_{1}^{\Theta}, \ldots, S_{n}^{\Theta}\right\}$.
Remark 2.1. In the case $n=2$, conjunction of Assumptions A and B coincides with Assumption C, which is the same as condition (1.3). Thus, Theorems $2.1-2.2$ generalize the result in Theorem 1.1.

Remark 2.2. If conditions of Theorem 2.2 are satisfied and X_{1}, \ldots, X_{n} are independent, then relations (2.3) were proved by Wang ([21], Lemma 4) and Chen et al. ([3], Theorem 2.1); moreover, the interval $[a, b]$ can be extended to $(0, b]$ if, additionally, Θ_{k} 's are positively associated (see Theorem 2.2 in [3]).

Remark 2.3. Note that, in general, equivalence relations in (2.3) can not be extended to

$$
\mathrm{P}\left(S_{n}^{\Theta}>x\right) \sim \sum_{i=1}^{n} \mathrm{P}\left(\Theta_{i} X_{i}>x\right)
$$

Let $n=2, \Theta_{1}=\Theta_{2}=1$ and let X_{1}, X_{2} be independent r.v.s. According to [12], $F_{1} \in \mathscr{S}$ and $F_{2} \in \mathscr{S}$ does not imply that convolution of F_{1} and $\underline{F_{2}}$ is in \mathscr{S}, unless $F_{1}=F_{2}$. Hence, both convolution closure and property $\overline{F_{1} * F_{2}}(x) \sim \overline{F_{1}}(x)+\overline{F_{2}}(x)$ do not hold in \mathscr{S}. Therefore, equivalence relation $\mathrm{P}\left(X_{1}+X_{2}>x\right) \sim \mathrm{P}\left(X_{1}>x\right)+\mathrm{P}\left(X_{2}>x\right)$ is not valid in \mathscr{L} since $\mathscr{S} \subset \mathscr{L}$, see also discussion in [2].

3. Proofs of main results

3.1. Proof of Theorem 2.1

The proof of Theorem 2.1 is essentially based on the uniform closure property of the sum $S_{n}^{w}:=w_{1} X_{1}+\cdots+w_{n} X_{n}$: if Assumptions A and B are satisfied and each $F_{k} \in \mathscr{L}$, then the distribution of sum S_{n}^{w} is uniformly in \mathscr{L} too, in the sense of the following lemma.

Lemma 3.1. Let $X_{1}, \ldots, X_{n}($ with $n \geq 2)$ be the real-valued r.v.s with corresponding distributions F_{1}, \ldots, F_{n} and let Assumptions A, B hold. If $F_{k} \in \mathscr{L}$, $k=1, \ldots, n$, then for any $K>0$ the relation

$$
\begin{equation*}
\mathrm{P}\left(S_{n}^{w}>x-K\right) \sim \mathrm{P}\left(S_{n}^{w}>x\right) \tag{3.1}
\end{equation*}
$$

holds uniformly for $\bar{w}_{n}=\left(w_{1}, \ldots, w_{n}\right) \in[a, b]^{n}$.
Proof. It is sufficient to prove that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{n} \in[a, b]^{n}} \frac{\mathrm{P}\left(S_{n}^{w}>x-K\right)}{\mathrm{P}\left(S_{n}^{w}>x\right)} \leq 1 . \tag{3.2}
\end{equation*}
$$

By Remark 2.1, relation (3.1) holds for $n=2$ (see Lemma 3.1 in [26]). Suppose that relation (3.2) holds for some $n=N \geq 2$, i.e.,

$$
\begin{equation*}
\mathrm{P}\left(S_{N}^{w}>x-K\right) \sim \mathrm{P}\left(S_{N}^{w}>x\right) \tag{3.3}
\end{equation*}
$$

with above uniformity. We will prove that (3.2) holds for $n=N+1$. This will prove the statement of the lemma.

Let $\epsilon \in(0,1)$ be an arbitrary constant. Since $F_{N+1} \in \mathscr{L}$, we have that

$$
\begin{equation*}
\frac{\mathrm{P}\left(X_{N+1}>x-K\right)}{\mathrm{P}\left(X_{N+1}>x\right)} \leq 1+\epsilon \tag{3.4}
\end{equation*}
$$

if $x \geq x_{1}>0$. Also, condition (2.1) implies that
$(1-\epsilon) \bar{F}_{N+1}(x) g_{N+1}\left(y_{1}, \ldots, y_{N}\right) \leq \mathrm{P}\left(X_{N+1}>x \mid X_{1}=y_{1}, \ldots, X_{N}=y_{N}\right)$

$$
\begin{equation*}
\leq(1+\epsilon) \bar{F}_{N+1}(x) g_{N+1}\left(y_{1}, \ldots, y_{N}\right) \tag{3.5}
\end{equation*}
$$

for all $y_{i} \in \mathbb{R}, i=1, \ldots, N$ and $x \geq x_{2} \geq x_{1}$.

If $x \geq \max \left\{b x_{2}, x_{2}\right\}$, then
(3.6)

$$
\begin{aligned}
& \frac{\mathrm{P}\left(S_{N+1}^{w}>x-K\right)}{\mathrm{P}\left(S_{N+1}^{w}>x\right)} \\
= & \frac{\left(\int_{\mathcal{D}_{1}}+\int_{\mathcal{D}_{2}}^{w}\right) \mathrm{P}\left(w_{N+1} X_{N+1}>x-K-\sum_{i=1}^{N} w_{i} y_{i} \mid X_{1}=y_{1}, \ldots, X_{N}=y_{N}\right) \mathrm{d} F_{X_{1}, \ldots, X_{N}}\left(y_{1}, \ldots, y_{N}\right)}{\left(\int_{\mathcal{D}_{3}}+\int_{\mathcal{D}_{4}}\right) \mathrm{P}\left(w_{N+1} X_{N+1}>x-\sum_{i=1}^{N} w_{i} y_{i} \mid X_{1}=y_{1}, \ldots, X_{N}=y_{N}\right) \mathrm{d} F_{X_{1}, \ldots, X_{N}}\left(y_{1}, \ldots, y_{N}\right)} \\
= & \frac{I_{11}(x)+I_{12}(x)}{I_{21}(x)+I_{22}(x)} \leq \max \left\{\frac{I_{11}(x)}{I_{21}(x)}, \frac{I_{12}(x)}{I_{22}(x)}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{D}_{1}:=\left\{\left(y_{1}, \ldots, y_{N}\right): \sum_{i=1}^{N} w_{i} y_{i} \leq x-b x_{2}-K\right\} \\
& \mathcal{D}_{2}:=\left\{\left(y_{1}, \ldots, y_{N}\right): \sum_{i=1}^{N} w_{i} y_{i}>x-b x_{2}-K\right\} \\
& \mathcal{D}_{3}:=\left\{\left(y_{1}, \ldots, y_{N}\right): \sum_{i=1}^{N} w_{i} y_{i} \leq x-b x_{2}\right\} \\
& \mathcal{D}_{4}:=\left\{\left(y_{1}, \ldots, y_{N}\right): \sum_{i=1}^{N} w_{i} y_{i}>x-b x_{2}\right\} .
\end{aligned}
$$

Since $x \geq b x_{2}, x \geq x_{2} \geq x_{1}$, relations (3.4), (3.5) imply that

$$
\begin{align*}
& \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}} \frac{I_{11}(x)}{I_{21}(x)} \tag{3.7}\\
\leq & \frac{1+\epsilon}{1-\epsilon} \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}} \frac{\int_{\mathcal{D}_{1}} \mathrm{P}\left(w_{N+1} X_{N+1}>x-K-\sum_{i=1}^{N} w_{i} y_{i}\right) g_{N+1}\left(y_{1}, \ldots, y_{N}\right) \mathrm{d} F_{X_{1}, \ldots, X_{N}\left(y_{1}, \ldots, y_{N}\right)}^{\int_{\mathcal{D}_{1}} \mathrm{P}\left(w_{N+1} X_{N+1}>x-\sum_{i=1}^{N} w_{i} y_{i} g_{N+1}\left(y_{1}, \ldots, y_{N}\right) \mathrm{d} F_{X_{1}, \ldots, X_{N}}\left(y_{1}, \ldots, y_{N}\right)\right.}}{} \\
\leq & \frac{1+\epsilon}{1-\epsilon} \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}\left(y_{1}, \ldots, y_{N}\right) \in \mathcal{D}_{1}} \frac{\mathrm{P}\left(w_{N+1} X_{N+1}>x-K-\sum_{i=1}^{N} w_{i} y_{i}\right)}{\mathrm{P}\left(w_{N+1} X_{N+1}>x-\sum_{i=1}^{N} w_{i} y_{i}\right)} \\
\leq & \frac{1+\epsilon}{1-\epsilon} \sup _{z \geq x_{2}} \frac{\mathrm{P}\left(X_{N+1}>z-K\right)}{\mathrm{P}\left(X_{N+1}>z\right)} \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} .
\end{align*}
$$

On the other hand, condition (2.2) implies that

$$
\begin{equation*}
\leq(1+\epsilon) h_{N+1}^{(w)}\left(y_{N+1}\right) \mathrm{P}\left(S_{N}^{w}>x\right) \tag{3.8}
\end{equation*}
$$

for all $y_{N+1} \in \mathbb{R}, \bar{w}_{N} \in[a, b]^{N}$ and $x \geq x_{3}$. Hence,

$$
\begin{aligned}
I_{22}(x) & =\mathrm{P}\left(S_{N}^{w}>x-b x_{2}, S_{N+1}^{w}>x\right) \\
& \geq \mathrm{P}\left(S_{N}^{w}>x, S_{N+1}^{w}>x\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \mathrm{P}\left(S_{N}^{w}>x, X_{N+1} \geq 0\right)+\mathrm{P}\left(S_{N}^{w}+w_{N+1} X_{N+1}>x, X_{N+1}<0\right) \\
= & \int_{[0, \infty)} \mathrm{P}\left(S_{N}^{w}>x \mid X_{N+1}=y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right) \\
& +\int_{(-\infty, 0)} \mathrm{P}\left(S_{N}^{w}>x-w_{N+1} y_{N+1} \mid X_{N+1}=y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right) \\
\geq & (1-\epsilon) \int_{[0, \infty)} \mathrm{P}\left(S_{N}^{w}>x\right) h_{N+1}^{(w)}\left(y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right) \\
& +(1-\epsilon) \int_{(-\infty, 0)} \mathrm{P}\left(S_{N}^{w}>x-w_{N+1} y_{N+1}\right) h_{N+1}^{(w)}\left(y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right) \\
= & (1-\epsilon) \mathrm{P}\left(S_{N}^{w}>x\right) \mathrm{E} h_{N+1}^{(w)}\left(X_{N+1}\right) \mathbb{I}_{\left\{X_{N+1} \geq 0\right\}} \\
& +(1-\epsilon) \int_{(-\infty, 0)} \mathrm{P}\left(S_{N}^{w}>x-w_{N+1} y_{N+1}\right) h_{N+1}^{(w)}\left(y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right)
\end{aligned}
$$

for all $\bar{w}_{N+1} \in[a, b]^{N+1}$ and $x \geq x_{3}$. Here, $E h_{N+1}^{(w)}\left(X_{N+1}\right) \mathbb{I}_{\left\{X_{N+1} \geq 0\right\}}>0$ because of heavy tailedness of F_{N+1}. Similarly, under (3.8),

$$
\begin{align*}
& I_{12}(x) \tag{3.10}\\
= & \mathrm{P}\left(S_{N+1}^{w}>x-K, S_{N}^{w}>x-b x_{2}-K\right) \\
\leq & \mathrm{P}\left(S_{N+1}^{w}>x-K, S_{N}^{w}>x-K\right)+\mathrm{P}\left(x-b x_{2}-K<S_{N}^{w} \leq x-K\right) \\
= & \mathrm{P}\left(S_{N}^{w}>x-K, X_{N+1} \geq 0\right)+\mathrm{P}\left(S_{N}^{w}+w_{N+1} X_{N+1}>x-K, X_{N+1}<0\right) \\
& +\mathrm{P}\left(x-b x_{2}-K<S_{N}^{w} \leq x-K\right) \\
\leq & (1+\epsilon) \mathrm{P}\left(S_{N}^{w}>x-K\right) \mathrm{E} h_{N+1}^{(w)}\left(X_{N+1}\right) \mathbb{I}_{\left\{X_{N+1} \geq 0\right\}} \\
& +(1+\epsilon) \int_{(-\infty, 0)} \mathrm{P}\left(S_{N}^{w}>x-K-w_{N+1} y_{N+1}\right) h_{N+1}^{(w)}\left(y_{N+1}\right) \mathrm{d} F_{N+1}\left(y_{N+1}\right) \\
& +\mathrm{P}\left(S_{N}^{w}>x-b x_{2}-K\right)-\mathrm{P}\left(S_{N}^{w}>x-K\right)
\end{align*}
$$

for $x \geq x_{3}$ and all $\bar{w}_{N+1} \in[a, b]^{N+1}$.
Relations (3.9), (3.10) imply that

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}} \frac{I_{12}(x)}{I_{22}(x)} \\
\leq & \frac{1}{1-\epsilon} \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N} \in[a, b]^{N}}\left(\frac{\mathrm{P}\left(S_{N}^{w}>x-b x_{2}-K\right)}{\mathrm{P}\left(S_{N}^{w}>x\right)}-\frac{\mathrm{P}\left(S_{N}^{w}>x-K\right)}{\mathrm{P}\left(S_{N}^{w}>x\right)}\right) \\
& +\frac{1+\epsilon}{1-\epsilon} \max \left\{\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N} \in[a, b]^{N}} \frac{\mathrm{P}\left(S_{N}^{w}>x-K\right)}{\mathrm{P}\left(S_{N}^{w}>x\right)},\right. \\
& \left.\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N} \in[a, b]^{N}} \sup _{y_{N+1}<0} \frac{\mathrm{P}\left(S_{N}^{w}>x-w_{N+1} y_{N+1}-K\right)}{\mathrm{P}\left(S_{N}^{w}>x-w_{N+1} y_{N+1}\right)}\right\} .
\end{aligned}
$$

From induction hypothesis (3.3) we obtain that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}} \frac{I_{12}(x)}{I_{22}(x)} \leq \frac{1+\epsilon}{1-\epsilon} . \tag{3.11}
\end{equation*}
$$

Hence, by (3.6), (3.7), (3.11), we get

$$
\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{N+1} \in[a, b]^{N+1}} \frac{\mathrm{P}\left(S_{N+1}^{w}>x-K\right)}{\mathrm{P}\left(S_{N+1}^{w}>x\right)} \leq \frac{(1+\epsilon)^{2}}{1-\epsilon} .
$$

The arbitrariness of $\epsilon>0$ implies inequality (3.2) for $n=N+1$.
It is easy to see that the result in Lemma 3.1 can be reformulated replacing "for any constant $K>0$ " by "for some infinitely increasing positive function $K(x) "$ (see, e.g., the arguments in [27]). Thus we have:
Corollary 3.1. Assume the conditions in Lemma 3.1. Then, for some infinitely increasing positive function $K(x)$, it holds that

$$
\begin{equation*}
\mathrm{P}\left(S_{n}^{w}>x \pm K(x)\right) \sim \mathrm{P}\left(S_{n}^{w}>x\right) \tag{3.12}
\end{equation*}
$$

uniformly for $\bar{w}_{n} \in[a, b]^{n}$.
Proof of Theorem 2.1. Using Lemma 3.1, we obtain that for any $K>0$

$$
\begin{aligned}
\mathrm{P}\left(S_{n}^{\Theta}>x-K\right) & =\int_{[a, b]^{n}} \ldots \int \mathrm{P}\left(S_{n}^{w}>x-K\right) \mathrm{P}\left(\Theta_{1} \in \mathrm{~d} w_{1}, \ldots, \Theta_{n} \in \mathrm{~d} w_{n}\right) \\
& \sim \int_{[a, b]^{n}} \ldots \int \mathrm{P}\left(S_{n}^{w}>x\right) \mathrm{P}\left(\Theta_{1} \in \mathrm{~d} w_{1}, \ldots, \Theta_{n} \in \mathrm{~d} w_{n}\right) \\
& =\mathrm{P}\left(S_{n}^{\Theta}>x\right)
\end{aligned}
$$

3.2. Proof of Theorem 2.2

The proof of Theorem 2.2 is based on the following lemma. Set $S_{n}^{w}:=$ $\sum_{k=1}^{n} w_{k} X_{k}, S_{n}^{w+}:=\sum_{k=1}^{n} w_{k} X_{k}^{+}$and $M_{n}^{w}:=\max \left\{S_{1}^{w}, \ldots, S_{n}^{w}\right\}$.

Lemma 3.2. Let $X_{1}, \ldots, X_{n}(n \geq 2)$ be real-valued r.v.s with corresponding distributions F_{1}, \ldots, F_{n}, such that each $F_{k} \in \mathscr{L}$. Then, under Assumption C,

$$
\mathrm{P}\left(S_{n}^{w}>x\right) \sim \mathrm{P}\left(S_{n}^{w+}>x\right) \sim \mathrm{P}\left(M_{n}^{w}>x\right)
$$

uniformly for $\bar{w}_{n} \in[a, b]^{n}$.
Proof. Since $S_{n}^{w} \leq M_{n}^{w} \leq S_{n}^{w+}$, we only need to prove that

$$
\begin{equation*}
\mathrm{P}\left(S_{n}^{w+}>x\right) \lesssim \mathrm{P}\left(S_{n}^{w}>x\right) \tag{3.13}
\end{equation*}
$$

Obviously, for positive x, it holds

$$
\begin{aligned}
\mathrm{P}\left(S_{n}^{w+}>x\right) & =\mathrm{P}\left(S_{n}^{w}>x\right)+\mathrm{P}\left(S_{n}^{w+}>x, S_{n}^{w} \leq x\right) \\
& =\mathrm{P}\left(S_{n}^{w}>x\right)+\sum_{I} \mathrm{P}\left(S_{n}^{w+}>x, S_{n}^{w} \leq x, \mathcal{A}_{I}(X)\right)
\end{aligned}
$$

$$
\begin{equation*}
=: \mathrm{P}\left(S_{n}^{w}>x\right)+\sum_{I} p_{I}, \tag{3.14}
\end{equation*}
$$

where the sum \sum_{I} is taken over all nonempty subsets $I \subset\{1,2, \ldots, n\}$ and

$$
\mathcal{A}_{I}(X):=\left\{\bigcap_{k \in I}\left\{X_{k} \geq 0\right\}\right\} \bigcap\left\{\bigcap_{k \in I^{c}}\left\{X_{k}<0\right\}\right\}
$$

Let $I=\left\{k_{1}, \ldots, k_{m}\right\}$ be a fixed subset of indices with nonempty $I^{c}=$ $\left\{r_{1}, \ldots, r_{n-m}\right\}$. Set $l:=n-m$ and write

$$
\begin{aligned}
p_{I}= & \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x, \sum_{k \in I} w_{k} X_{k}+\sum_{r \in I^{c}} w_{r} X_{r} \leq x, X_{k} \geq 0, k \in I ; X_{r}<0, r \in I^{c}\right) \\
\leq & \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x, \sum_{k \in I} w_{k} X_{k}+\sum_{r \in I^{c}} w_{r} X_{r} \leq x, X_{r}<0, r \in I^{c}\right) \\
= & \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x, X_{r}<0, r \in I^{c}\right)-\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}+\sum_{r \in I^{c}} w_{r} X_{r}>x, X_{r}<0, r \in I^{c}\right) \\
\leq & \int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x \mid X_{r}=y_{r}, r \in I^{c}\right) \mathrm{d} F_{X_{r_{1}}, \ldots, X_{r_{l}}}\left(y_{\left.r_{1}, \ldots, y_{r_{l}}\right)}\right. \\
& -\int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x-b \sum_{r \in I^{c}} y_{r} \mid X_{r}=y_{r}, r \in I^{c}\right) \mathrm{d} F_{X_{r_{1}}, \ldots, X_{r_{l}}}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right) \\
\leq & C\left(\int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \pi_{I}^{\prime}\left(x, y_{r}, r \in I^{c}\right) \mathrm{d} F_{X_{r_{1}}, \ldots, X_{r_{l}}}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right)\right. \\
& \quad-\int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \pi_{I}^{\prime \prime}\left(x, y_{r}, r \in I^{c}\right) \mathrm{d} F_{\left.X_{r_{1}, \ldots, X_{r_{l}}}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right)\right)}
\end{aligned}
$$

$$
=: C p_{I}^{\prime}
$$

where

$$
\begin{aligned}
\pi_{I}^{\prime}\left(x, y_{r}, r \in I^{c}\right) & :=\frac{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x \mid X_{r}=y_{r}, r \in I^{c}\right)}{h_{I, I^{c}}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right)} \\
\pi_{I}^{\prime \prime}\left(x, y_{r}, r \in I^{c}\right) & :=\frac{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x-b \sum_{r \in I^{c}} y_{r} \mid X_{r}=y_{r}, r \in I^{c}\right)}{h_{I, I^{c}}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right)}
\end{aligned}
$$

and where we have used that, by Assumption C,

$$
\sup _{w_{k} \in[a, b], k \in I} \sup _{\left(y_{r_{1}}, \ldots, y_{r_{l}}\right) \in \mathbb{R}^{l}} h_{I, I^{c}}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right) \leq \text { Const }<\infty .
$$

According to the Fatou lemma, Assumption C and Lemma 3.1,

$$
\limsup _{x \rightarrow \infty} \sup _{w_{k} \in[a, b], k \in I} \frac{p_{I}^{\prime}}{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)}
$$

$$
\begin{aligned}
& \leq \int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \limsup _{x \rightarrow \infty} \sup _{w_{k} \in[a, b], k \in I} \frac{\pi_{I}^{\prime}\left(x, y_{r}, r \in I^{c}\right)}{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)} \mathrm{d} F_{X_{r_{1}}, \ldots, X_{r_{l}}}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right) \\
& \quad-\int_{(-\infty, 0)} \ldots \int_{(-\infty, 0)} \liminf _{x \rightarrow \infty} \inf _{w_{k} \in[a, b], k \in I} \frac{\pi_{I}^{\prime \prime}\left(x, y_{r}, r \in I^{c}\right)}{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)} \mathrm{d} F_{X_{r_{1}}, \ldots, X_{r_{l}}}\left(y_{r_{1}}, \ldots, y_{r_{l}}\right) \\
& =0
\end{aligned}
$$

Since $p_{I} \leq \operatorname{Const} p_{I}^{\prime}$, for each subset I in (3.14) we obtain that

$$
\limsup _{x \rightarrow \infty} \sup _{\bar{w}_{n} \in[a, b]^{n}} \frac{p_{I}}{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)}=0
$$

This, together with (3.14), implies

$$
\begin{aligned}
& \liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in[a, b]^{n}} \frac{\mathrm{P}\left(S_{n}^{w}>x\right)}{\mathrm{P}\left(S_{n}^{w+}>x\right)} \\
\geq & 1-\sum_{I} \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{n} \in[a, b]^{n}} \frac{p_{I}}{\mathrm{P}\left(S_{n}^{w+}>x\right)} \\
= & 1-\sum_{I} \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{n} \in[a, b]^{n}} \frac{p_{I}}{\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)}=1 .
\end{aligned}
$$

Thus, relation (3.13) holds and the lemma is proved.
Proof of Theorem 2.2. Similarly, as in the case of Theorem 2.1, the proof follows immediately from Lemma 3.2.

4. The case of dependence described through copula

In this section we demonstrate how the functions $g_{k}, h_{k}^{(w)}$ and $h_{I, J}^{(w)}$, appearing in Assumptions A, B and C, can be found when the dependence structure among X_{1}, \ldots, X_{n} is generated by an n-dimensional absolutely continuous copula $C\left(v_{1}, \ldots, v_{n}\right)$.

4.1. General copula dependence

Assume that the distribution of vector $\left(X_{1}, \ldots, X_{n}\right)$ is given by
$\mathrm{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right),\left(x_{1}, \ldots, x_{n}\right) \in[-\infty, \infty]^{n}$,
where $C\left(v_{1}, \ldots, v_{n}\right)$ is some absolutely continuous copula function with corresponding positive copula density $c\left(v_{1}, \ldots, v_{n}\right)$. Assume that marginal distributions F_{1}, \ldots, F_{n} are absolutely continuous with corresponding positive densities f_{1}, \ldots, f_{n}.

Consider first the case of Assumptions A and B.
Let $C_{k}\left(v_{1}, \ldots, v_{k}\right):=C\left(v_{1}, \ldots, v_{k}, 1, \ldots, 1\right)$, where $k=2, \ldots, n$, be k dimensional marginal copulas. Also write $C_{1}\left(v_{1}\right)=v_{1}$. Let the corresponding copula densities be $c_{k}\left(v_{1}, \ldots, v_{k}\right), k=1, \ldots, n$. Denote $\widetilde{C}_{k}\left(v_{1}, \ldots, v_{k}\right):=$
$C_{k-1}\left(v_{1}, \ldots, v_{k-1}\right)-C_{k}\left(v_{1}, \ldots, v_{k}\right)$ and let

$$
\begin{equation*}
\widetilde{c}_{k}\left(v_{1}, \ldots, v_{k}\right):=\frac{\partial^{k-1} \widetilde{C}_{k}\left(v_{1}, \ldots, v_{k}\right)}{\partial v_{1} \ldots \partial v_{k-1}} \tag{4.2}
\end{equation*}
$$

Further, we introduce the following assumption: for any $k=2, \ldots, n$, there exists positive limit

$$
\begin{equation*}
\bar{c}_{k}\left(v_{1}, \ldots, v_{k-1}, 1-\right):=\lim _{v \searrow 0} \frac{\widetilde{c}_{k}\left(v_{1}, \ldots, v_{k-1}, 1-v\right)}{v} \tag{4.3}
\end{equation*}
$$

uniformly for $\left(v_{1}, \ldots, v_{k-1}\right) \in[0,1]^{k-1}$.
Denote $X_{1}^{*}, \ldots, X_{n}^{*}$ the corresponding independent copies of r.v.s X_{1}, \ldots, X_{n} and set $S_{k}^{w *}:=w_{1} X_{1}^{*}+\cdots+w_{k} X_{k}^{*}, k=1, \ldots, n$.

Proposition 4.1. Assume that the distribution of random vector $\left(X_{1}, \ldots, X_{n}\right)$ is given by (4.1) with some absolutely continuous copula $C\left(v_{1}, \ldots, v_{n}\right)$ and absolutely continuous marginal distributions F_{1}, \ldots, F_{n} with corresponding positive densities f_{1}, \ldots, f_{n}. Then Assumption A is equivalent to (4.3) and in this case functions $g_{k}, k=2, \ldots, n$ are given by

$$
\begin{equation*}
g_{k}\left(y_{1}, \ldots, y_{k-1}\right)=\frac{\bar{c}_{k}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right), 1-\right)}{c_{k-1}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right)\right)} . \tag{4.4}
\end{equation*}
$$

Furthermore, Assumption B is equivalent to the existence of positive limits

$$
\begin{equation*}
h_{k}^{(w)}(y):=\lim _{x \rightarrow \infty} \frac{\operatorname{E} c_{k}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right), F_{k}(y)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\operatorname{E} c_{k-1}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right)\right) \mathbb{I}_{\left\{S_{k-1}^{W *}>x\right\}}^{w *}} \tag{4.5}
\end{equation*}
$$

uniformly for $\bar{w}_{k-1} \in[a, b]^{k-1}, y \in \mathbb{R}$ and $k=2, \ldots, n$.
Proof. Denote the k-dimensional density of vector $\left(X_{1}, \ldots, X_{k}\right)$ by $f_{X_{1}, \ldots, X_{k}}$. Clearly,

$$
\begin{equation*}
f_{X_{1}, \ldots, X_{k}}\left(y_{1}, \ldots, y_{k}\right)=c_{k}\left(F_{1}\left(y_{1}\right), \ldots, F_{k}\left(y_{k}\right)\right) f_{1}\left(y_{1}\right) \cdots f_{k}\left(y_{k}\right), \tag{4.6}
\end{equation*}
$$

which is positive for all k by the positivity of copula density c and marginal densities f_{1}, \ldots, f_{n}. Hence,

$$
\begin{align*}
& \mathrm{P}\left(X_{k}>x \mid X_{1}=y_{1}, \ldots, X_{k-1}=y_{k-1}\right) \tag{4.7}\\
= & \frac{\partial^{k-1} \mathrm{P}\left(X_{k}>x, X_{1} \leq y_{1}, \ldots, X_{k-1} \leq y_{k-1}\right)}{\partial y_{1} \ldots \partial y_{k-1}} \frac{1}{f_{X_{1}, \ldots, X_{k-1}}\left(y_{1}, \ldots, y_{k-1}\right)} \\
= & \frac{\widetilde{c}_{k}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right), F_{k}(x)\right)}{c_{k-1}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right)\right)}
\end{align*}
$$

which follows from (4.6) and equality

$$
\begin{aligned}
& \frac{\partial^{k-1} \mathrm{P}\left(X_{k}>x, X_{1} \leq y_{1}, \ldots, X_{k-1} \leq y_{k-1}\right)}{\partial y_{1} \ldots \partial y_{k-1}} \\
= & \widetilde{c}_{k}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right), F_{k}(x)\right) f_{1}\left(y_{1}\right) \ldots f_{k-1}\left(y_{k-1}\right) .
\end{aligned}
$$

The last equality holds by (4.2).

By (4.7), Assumption A is equivalent to

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\widetilde{c}_{k}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right), F_{k}(x)\right)}{\overline{F_{k}}(x)} \\
= & g_{k}\left(y_{1}, \ldots, y_{k-1}\right) c_{k-1}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right)\right)
\end{aligned}
$$

for some positive functions g_{k}, uniformly for $\left(y_{1}, \ldots, y_{k-1}\right) \in \mathbb{R}^{k-1}, k=$ $2, \ldots, n$. But the last relation is equivalent to (4.3). Thus, (4.4) holds.

Let's deal with Assumption B. Since F_{k} is absolutely continuous, we have

$$
\begin{equation*}
\mathrm{P}\left(S_{k-1}^{w}>x \mid X_{k}=y\right)=\frac{\partial \mathrm{P}\left(S_{k-1}^{w}>x, X_{k} \leq y\right)}{\partial y} \frac{1}{f_{k}(y)} . \tag{4.8}
\end{equation*}
$$

It is easy to see that

$$
\begin{aligned}
& \frac{\partial \mathrm{P}\left(S_{k-1}^{w}>x, X_{k} \leq y\right)}{\partial y} \\
&= f_{k}(y) \int_{\sum_{i=1}^{k-1} w_{i} u_{i}>x} c_{k}\left(F_{1}\left(u_{1}\right), \ldots, F_{k-1}\left(u_{k-1}\right), F_{k}(y)\right) \\
&= f_{k}(y) \mathrm{E}_{1}\left(u_{1}\right) \cdots f_{k-1}\left(F_{1}\left(X_{1-1}^{*}\right) \mathrm{d} u_{1} \cdots \mathrm{~d} u_{k-1}\right. \\
&\left.f_{k-1}\left(X_{k-1}^{*}\right), F_{k}(y)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} .
\end{aligned}
$$

Hence, by (4.8) and equality

$$
\mathrm{P}\left(S_{k-1}^{w}>x\right)=\mathrm{E} c_{k-1}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}},
$$

we obtain

$$
\begin{aligned}
& \mathrm{P}\left(S_{k-1}^{w}>x \mid X_{k}=y\right) \\
= & \frac{\mathrm{E} c_{k}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right), F_{k}(y)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\mathrm{E} c_{k-1}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}} \mathrm{P}\left(S_{k-1}^{w}>x\right) .
\end{aligned}
$$

This implies the second statement of proposition.
Next we formulate the similar result in the case of Assumption C. For any (not necessarily nonempty) subsets $I=\left\{k_{1}, \ldots, k_{m}\right\}, J=\left\{r_{1}, \ldots, r_{p}\right\} \subset$ $\{1, \ldots, n\} \backslash I$ denote by $c_{I, J}\left(v_{k}, k \in I, v_{r}, r \in J\right)$ the copula density corresponding to random vector $\left(X_{k_{1}}, \ldots, X_{k_{m}}, X_{r_{1}}, \ldots, X_{r_{p}}\right)$, i.e.,

$$
\begin{aligned}
& f_{X_{k_{1}}, \ldots, X_{k_{m}}, X_{r_{1}}, \ldots, X_{r_{p}}}\left(y_{k_{1}}, \ldots, y_{k_{m}}, y_{r_{1}}, \ldots, y_{r_{p}}\right) \\
= & c_{I, J}\left(F_{k}\left(y_{k}\right), k \in I, F_{r}\left(y_{r}\right), r \in J\right) \prod_{k} f_{k}\left(y_{k}\right) \prod_{r \in J} f_{r}\left(y_{r}\right),
\end{aligned}
$$

and let $c_{I}:=c_{I, \varnothing}, c_{J}:=c_{\varnothing, J}$.
Proposition 4.2. Assume that the distribution of random vector $\left(X_{1}, \ldots, X_{n}\right)$ is given by (4.1) with some absolutely continuous copula $C\left(v_{1}, \ldots, v_{n}\right)$ and absolutely continuous marginal distributions F_{1}, \ldots, F_{n}. Then Assumption C is
equivalent to the existence of positive, uniformly bounded limits

$$
\begin{aligned}
& h_{I, J}^{(w)}\left(y_{r_{1}}, \ldots, y_{r_{p}}\right) \\
:= & \frac{1}{c_{J}\left(F_{r}\left(y_{r}\right), r \in J\right)} \lim _{x \rightarrow \infty} \frac{\mathrm{E} c_{I, J}\left(F_{k}\left(X_{k}^{*}\right), k \in I, F_{r}\left(y_{r}\right), r \in J\right) \mathbb{I}_{\left\{\sum_{k \in I} w_{k} X_{k}^{*}>x\right\}}}{\mathrm{E} c_{I}\left(F_{k}\left(X_{k}^{*}\right), k \in I\right) \mathbb{I}_{\left\{\sum_{k \in I} w_{k} X_{k}^{*}>x\right\}}}
\end{aligned}
$$

which hold uniformly for $w_{k} \in[a, b], k \in I, y_{r} \in \mathbb{R}, r \in J$ and all nonempty sets of indices $I \subset\{1, \ldots, n\}$ and $J \subset\{1, \ldots, n\} \backslash I$.

Proof. The proof is similar to that of Proposition 4.1. We have

$$
\begin{aligned}
& \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x \mid X_{r}=y_{r}, r \in J\right) \\
= & \frac{\partial^{p} \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x, X_{r} \leq y_{r}, r \in J\right)}{\partial y_{r_{1}} \ldots \partial y_{r_{p}}} \frac{1}{f_{X_{r_{1}}, \ldots, X_{r_{p}}}\left(y_{r_{1}}, \ldots, y_{r_{p}}\right)},
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\partial^{p} \mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x, X_{r} \leq y_{r}, r \in J\right)}{\partial y_{r_{1}} \cdots \partial y_{r_{p}}} \\
= & \prod_{r \in J} f_{r}\left(y_{r}\right) \int_{\sum_{k \in I}} \int_{w_{k} u_{k}>x} c_{I, J}\left(F_{k}\left(u_{k}\right), k \in I, F_{r}\left(y_{r}\right), r \in J\right) \prod_{k \in I} f_{k}\left(u_{k}\right) \mathrm{d} u_{k_{1}} \cdots \mathrm{~d} u_{k_{m}}
\end{aligned}
$$

and $f_{X_{r_{1}}, \ldots, X_{r_{p}}}\left(y_{r_{1}}, \ldots, y_{r_{p}}\right)=c_{J}\left(F_{r}\left(y_{r}\right), r \in J\right) \prod_{r \in J} f_{r}\left(y_{r}\right)$. Now the proof follows observing that

$$
\mathrm{P}\left(\sum_{k \in I} w_{k} X_{k}>x\right)=\mathrm{E} c_{I}\left(F_{k}\left(X_{k}^{*}\right), k \in I\right) \mathbb{I}_{\left\{\sum_{k \in I} w_{k} X_{k}^{*}>x\right\}} .
$$

4.2. The case of FGM copula

In this subsection, we consider the case where $C\left(v_{1}, \ldots, v_{n}\right)$ is n-dimensional Farley-Gumbel-Morgenstern (FGM) copula, given by

$$
\begin{equation*}
C\left(v_{1}, \ldots, v_{n}\right)=\prod_{i=1}^{n} v_{i}\left(1+\sum_{1 \leq l<m \leq n} \theta_{l m}\left(1-v_{l}\right)\left(1-v_{m}\right)\right) \tag{4.9}
\end{equation*}
$$

where $\left(v_{1}, \ldots, v_{n}\right) \in[0,1]^{n}$ and real numbers $\theta_{l m}$ are chosen such that $C\left(v_{1}, \ldots, v_{n}\right)$ is a proper n-dimensional copula. For example, if $n=3$, the conditions can be summarized as follows: $\theta_{12}+\theta_{13}+\theta_{23} \geq-1, \theta_{13}+\theta_{23}-\theta_{12} \leq 1$, $\theta_{12}+\theta_{23}-\theta_{13} \leq 1, \theta_{12}+\theta_{13}-\theta_{23} \leq 1$. In this case,

$$
C_{k}\left(v_{1}, \ldots, v_{k}\right)=\prod_{i=1}^{k} v_{i}\left(1+\sum_{1 \leq l<m \leq k} \theta_{l m}\left(1-v_{l}\right)\left(1-v_{m}\right)\right), \quad k=2, \ldots, n
$$

and the corresponding copula densities are given by

$$
\begin{equation*}
c_{k}\left(v_{1}, \ldots, v_{k}\right)=1+\sum_{1 \leq l<m \leq k} \theta_{l m}\left(1-2 v_{l}\right)\left(1-2 v_{m}\right), \quad k=2, \ldots, n \tag{4.10}
\end{equation*}
$$

Everywhere below we assume the parameters $\theta_{l m}$ to be such that $c_{n}\left(v_{1}, \ldots, v_{n}\right)>0$ for all $\left(v_{1}, \ldots, v_{n}\right) \in[0,1]^{n}$. Obviously, this implies that $c_{k}\left(v_{1}, \ldots, v_{k}\right)>0$ for all $\left(v_{1}, \ldots, v_{k}\right) \in[0,1]^{k}$ and $k=2, \ldots, n$.

Next, we make the following assumption:
Assumption D. For each $k=1, \ldots, n-1$ there exists limit

$$
\lim _{x \rightarrow \infty} \frac{\bar{F}_{k}\left(x / w_{k}\right)}{\bar{F}_{1}\left(x / w_{1}\right)+\cdots+\bar{F}_{n-1}\left(x / w_{n-1}\right)}=: a_{k}^{(w)} \in(0,1]
$$

uniformly for $\bar{w}_{n-1} \in[a, b]^{n-1}$.
To illustrate Assumption D, suppose that F_{1}, \ldots, F_{n} are such that $\overline{F_{i}}(x) \sim$ $c_{i} L(x) x^{-\alpha}, \alpha \geq 0$, with some positive constants $c_{i}, i=1, \ldots, n$, and slowly varying function $L(x)$. Then Assumption D is satisfied and

$$
a_{k}^{(w)}=\frac{c_{k}}{c_{1}\left(w_{1} / w_{k}\right)^{\alpha}+\cdots+c_{n-1}\left(w_{n-1} / w_{k}\right)^{\alpha}} .
$$

On the other hand, if $a=b$ and $\bar{F}_{i}(x) \sim c_{i} \bar{G}(x), i=1, \ldots, n$, where $\bar{G}(x)>0$ for all x, then

$$
a_{k}^{(w)}=\frac{c_{k}}{c_{1}+\cdots+c_{n-1}}
$$

Next we will derive the expressions for functions g_{k} and $h_{k}^{(w)}$, omitting the case of function $h_{I, J}^{(w)}$, for which the corresponding expression is complicated and does not carry much interest.

For a distribution F, denote $\widetilde{F}:=1-2 F=2 \bar{F}-1$.
Proposition 4.3. Assume $n \geq 2$ and let X_{1}, \ldots, X_{n} be real-valued r.v.s whose distribution is generated by FGM copula in (4.9), marginal distributions F_{1}, \ldots, F_{n} are absolutely continuous and $F_{i} \in \mathscr{L} \cap \mathscr{D}, i=1, \ldots, n$. Then

$$
g_{k}\left(y_{1}, \ldots, y_{k-1}\right)=1-\frac{\sum_{1 \leq l \leq k-1} \theta_{l k} \widetilde{F}_{l}\left(y_{l}\right)}{c_{k-1}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right)\right)}, \quad k=2, \ldots, n
$$

If $n \geq 3$ and Assumption D holds, then

$$
h_{k}^{(w)}(y)=1-\widetilde{F}_{k}(y) \sum_{1 \leq l \leq k-1} \theta_{l k} a_{l, k-1}^{(w)}, \quad k=3, \ldots, n,
$$

where $a_{l, k-1}^{(w)}:=a_{l}^{(w)} /\left(a_{1}^{(w)}+\cdots+a_{k-1}^{(w)}\right)$.
Proof. We apply Proposition 4.1. Obviously,
$\widetilde{C}_{k}\left(v_{1}, \ldots, v_{k}\right)=\left(1-v_{k}\right) C_{k-1}\left(v_{1}, \ldots, v_{k-1}\right)-v_{1} \cdots v_{k}\left(1-v_{k}\right) \sum_{1 \leq l \leq k-1} \theta_{l k}\left(1-v_{l}\right)$,
implying that $\tilde{c}_{k}\left(v_{1}, \ldots, v_{k}\right)$ in (4.2) is

$$
\tilde{c}_{k}\left(v_{1}, \ldots, v_{k}\right)=\left(1-v_{k}\right) c_{k-1}\left(v_{1}, \ldots, v_{k-1}\right)-v_{k}\left(1-v_{k}\right) \sum_{1 \leq l \leq k-1} \theta_{l k}\left(1-2 v_{l}\right) .
$$

Hence, condition (4.3) is satisfied (uniformly in $\left(v_{1}, \ldots, v_{k-1}\right) \in[0,1]^{k-1}$) and

$$
\begin{aligned}
\bar{c}_{k}\left(v_{1}, \ldots, v_{k-1}, 1-\right) & =\lim _{v \searrow 0}\left(c_{k-1}\left(v_{1}, \ldots, v_{k-1}\right)-(1-v) \sum_{1 \leq l \leq k-1} \theta_{l k}\left(1-2 v_{l}\right)\right) \\
& =c_{k-1}\left(v_{1}, \ldots, v_{k-1}\right)-\sum_{1 \leq l \leq k-1} \theta_{l k}\left(1-2 v_{l}\right) .
\end{aligned}
$$

Therefore, by (4.4),

$$
g_{k}\left(y_{1}, \ldots, y_{k-1}\right)=1-\frac{\sum_{1 \leq l \leq k-1} \theta_{l k}\left(1-2 F_{l}\left(y_{l}\right)\right)}{c_{k-1}\left(F_{1}\left(y_{1}\right), \ldots, F_{k-1}\left(y_{k-1}\right)\right)} .
$$

Consider now function $h_{k}^{(w)}(y)$. For $k=2, \ldots, n$ we have

$$
h_{k}^{(w)}(y)=\lim _{x \rightarrow \infty} \frac{\varphi_{k}^{(w)}(x, y)}{\varphi_{k-1}^{(w)}(x)},
$$

where, by (4.5) and (4.10),

$$
\begin{aligned}
\varphi_{k}^{(w)}(x, y):= & \mathrm{E} c_{k}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right), F_{k}(y)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} \\
= & \mathrm{P}\left(S_{k-1}^{w *}>x\right)+\sum_{1 \leq l<m \leq k-1} \theta_{l m} \mathrm{E} \widetilde{F}_{l}\left(X_{l}^{*}\right) \widetilde{F}_{m}\left(X_{m}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} \\
& +\widetilde{F}_{k}(y) \sum_{1 \leq l \leq k-1} \theta_{l k} \mathrm{E} \widetilde{F}_{l}\left(X_{l}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}, \\
\varphi_{k-1}^{(w)}(x):= & \mathrm{E} c_{k-1}\left(F_{1}\left(X_{1}^{*}\right), \ldots, F_{k-1}\left(X_{k-1}^{*}\right)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} \\
= & \mathrm{P}\left(S_{k-1}^{w *}>x\right)+\sum_{1 \leq l<m \leq k-1} \theta_{l m} \mathrm{E} \widetilde{F}_{l}\left(X_{l}^{*}\right) \widetilde{F}_{m}\left(X_{m}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} .
\end{aligned}
$$

Rewrite now

$$
\frac{\varphi_{k}^{(w)}(x, y)}{\varphi_{k-1}^{(w)}(x)}=1+\widetilde{F}_{k}(y) b_{k}^{(w)}(x)
$$

where

$$
b_{k}^{(w)}(x):=\frac{\sum_{1 \leq l \leq k-1} \theta_{l k} \mathrm{E} \widetilde{F}_{l}\left(X_{l}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\mathrm{P}\left(S_{k-1}^{w *}>x\right)+\sum_{1 \leq l<m \leq k-1} \theta_{l m} \mathrm{E} \widetilde{F}_{l}\left(X_{l}^{*}\right) \widetilde{F}_{m}\left(X_{m}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}
$$

It remains to prove that, uniformly in $\bar{w}_{k-1} \in[a, b]^{k-1}$,

$$
\begin{equation*}
b_{k}^{(w)}(x) \rightarrow-\sum_{1 \leq l \leq k-1} \theta_{l k} a_{l, k-1}^{(w)}=: b_{k}^{(w)}, \quad k=3, \ldots, n . \tag{4.11}
\end{equation*}
$$

Rewrite

$$
b_{k}^{(w)}(x)=\frac{2 \sum_{1 \leq l \leq k-1} \theta_{l k} \mathrm{E} \overline{F_{l}}\left(X_{l}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}-\mathrm{P}\left(S_{k-1}^{w *}>x\right) \sum_{1 \leq l \leq k-1} \theta_{l k}}{2 \sum_{1 \leq l<m \leq k-1} \theta_{l m} \mathrm{E} Y_{l m}^{*} \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}+\mathrm{P}\left(S_{k-1}^{w *}>x\right)+\mathrm{P}\left(S_{k-1}^{w *}>x\right) \sum_{1 \leq l<m \leq k-1} \theta_{l m}},
$$

where $Y_{l m}^{*}:=2 \overline{F_{l}}\left(X_{l}^{*}\right) \overline{F_{m}}\left(X_{m}^{*}\right)-\overline{F_{l}}\left(X_{l}^{*}\right)-\overline{F_{m}}\left(X_{m}^{*}\right)$. The desired convergence (4.11) will follow if we show that

$$
\begin{align*}
\mathrm{E} \overline{F_{l}}\left(X_{l}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} & \sim \frac{1}{2}\left(1-a_{l, k-1}^{(w)}\right) \mathrm{P}\left(S_{k-1}^{w *}>x\right), \quad l=1, \ldots, k-1 \tag{4.12}\\
\mathrm{E} Y_{l m}^{*} \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}} & \sim-\frac{1}{2} \mathrm{P}\left(S_{k-1}^{w *}>x\right), \quad 1 \leq l<m \leq k-1
\end{align*}
$$

uniformly in $\bar{w}_{k-1} \in[a, b]^{k-1}$.
To show (4.12), take $Y_{i}=X_{i}^{*}, a_{i}(x) \equiv \overline{F_{i}}(x)$ in Corollary 5.1 below and note that condition (5.16) is satisfied:

$$
\mathrm{E} \overline{F_{i}}\left(X_{i}^{*}\right) \mathbb{I}_{\left\{X_{i}^{*}>x\right\}}=\overline{F_{j}}(x) \int_{x}^{\infty} \frac{\overline{F_{i}}(y)}{\overline{F_{j}}(x)} \mathrm{d} F_{i}(y)=o\left(\overline{F_{j}}(x)\right), j \neq i,
$$

because, by Assumption $\mathrm{D}, \overline{F_{i}}(x) \sim c_{i j} \overline{F_{j}}(x)$ with some positive constant $c_{i j}$. Combining Corollary 5.1, Proposition 5.1(i) and using that $\mathrm{E} \bar{F}_{l}\left(X_{l}^{*}\right)=1 / 2$ for all $l=1, \ldots, n$ (since distribution F_{l} has positive density), we get

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\mathrm{E} \overline{F_{l}}\left(X_{l}^{*}\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\mathrm{P}\left(S_{k-1}^{w *}>x\right)} & =\mathrm{E} \bar{F}_{l}\left(X_{l}^{*}\right) \lim _{x \rightarrow \infty} \frac{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)-\bar{F}_{l}\left(x / w_{l}\right)}{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)} \\
& =\frac{1}{2}\left(1-a_{l, k-1}^{(w)}\right), \quad l=1, \ldots, k-1,
\end{aligned}
$$

uniformly in $\bar{w}_{k-1} \in[a, b]^{k-1}$ (note that $0<a_{l, k-1}^{(w)}<1$ because $\sum_{l=1}^{k-1} a_{l, k-1}^{(w)}=$ 1 and $\left.a_{l, k-1}^{(w)}>0, k \geq 3\right)$. Thus, we get (4.12).

The proof of relation (4.13) is similar. If $k>3$, then, by Corollary 5.1,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\mathrm{E} Y_{l m}^{*} \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\mathrm{P}\left(S_{k-1}^{w *}>x\right)} \\
= & \lim _{x \rightarrow \infty} \frac{\mathrm{E}\left(2 \overline{F_{l}}\left(X_{l}^{*}\right) \overline{F_{m}}\left(X_{m}^{*}\right)-\overline{F_{l}}\left(X_{l}^{*}\right)-\overline{F_{m}}\left(X_{m}^{*}\right)\right) \mathbb{I}_{\left\{S_{k-1}^{w *}>x\right\}}}{\mathrm{P}\left(S_{k-1}^{w *}>x\right)} \\
= & 2 \mathrm{E} \overline{F_{l}}\left(X_{l}^{*}\right) \mathrm{E} \overline{F_{m}}\left(X_{m}^{*}\right) \lim _{x \rightarrow \infty} \frac{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)-\overline{F_{l}}\left(x / w_{l}\right)-\overline{F_{m}}\left(x / w_{m}\right)}{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)} \\
& -\mathrm{E} \overline{F_{l}}\left(X_{l}^{*}\right) \lim _{x \rightarrow \infty} \frac{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)-\overline{F_{l}}\left(x / w_{l}\right)}{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)} \\
& -\mathrm{E} \overline{F_{m}}\left(X_{m}^{*}\right) \lim _{x \rightarrow \infty} \frac{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)-\overline{F_{m}}\left(x / w_{m}\right)}{\sum_{i=1}^{k-1} \bar{F}_{i}\left(x / w_{i}\right)}=-\frac{1}{2}
\end{aligned}
$$

uniformly in $\bar{w}_{k-1} \in[a, b]^{k-1}$. The case $k=3$ in (4.13) easily follows from arguments above and (5.17). The proof is complete.

Consider now the tail asymptotics of the sum $S_{n}^{\Theta}=\Theta_{1} X_{1}+\cdots+\Theta_{n} X_{n}$ in the case when the distribution of vector $\left(X_{1}, \ldots, X_{n}\right)$ is generated by the FGM copula in (4.9). The next proposition shows that in the case of primary distributions from class $\mathscr{L} \cap \mathscr{D}$, the probabilities $\mathrm{P}\left(S_{n}^{\Theta}>x\right)$ and $\mathrm{P}\left(S_{n}^{\Theta+}>x\right)$ asymptotically are the same and are both asymptotically equivalent to $\mathrm{P}\left(\Theta_{1} X_{1}>x\right)+\cdots+\mathrm{P}\left(\Theta_{n} X_{n}>x\right)$ even in the case where the positive weights Θ_{k} are not bounded from zero. This result follows from Theorem 1 in [21] proved in the case of the so-called pairwise strong quasi-asymptotically independence (pSQAI) structure, introduced by Geluk and Tang [9]. Recall that r.v.s X_{1}, \ldots, X_{n} are pSQAI if, for any $i \neq j$,

$$
\begin{equation*}
\lim _{x_{i} \wedge x_{j} \rightarrow \infty} \mathrm{P}\left(\left|X_{i}\right|>x_{i} \mid X_{j}>x_{j}\right)=0 \tag{4.14}
\end{equation*}
$$

It easy to see that the FGM distribution given by (4.9) satisfies (4.14) (see, e.g., [9]).

Proposition 4.4. Suppose that $n \geq 2$ and X_{1}, \ldots, X_{n} are real-valued r.v.s with corresponding distributions F_{1}, \ldots, F_{n}, such that $F_{k} \in \mathscr{L} \cap \mathscr{D}, k=1, \ldots, n$. Let the distribution of vector $\left(X_{1}, \ldots, X_{n}\right)$ is generated by the FGM copula (4.9). If $\mathrm{P}\left(0<\Theta_{k} \leq b\right)=1, k=1, \ldots, n$, for some $b \in(0, \infty)$, then

$$
\begin{aligned}
\mathrm{P}\left(S_{n}^{\Theta}>x\right) & \sim \mathrm{P}\left(S_{n}^{\Theta+}>x\right) \sim \mathrm{P}\left(M_{n}^{\Theta}>x\right) \\
& \sim \mathrm{P}\left(\max _{k=1, \ldots, n} \Theta_{k} X_{k}>x\right) \sim \sum_{k=1}^{n} \mathrm{P}\left(\Theta_{k} X_{k}>x\right)
\end{aligned}
$$

Remark 4.1. The proof of relations in (4.15) is based essentially on two facts: first, the fact that the distribution of the product ΘX, where Θ and X are independent r.v.s with $0<\Theta \leq b$ a.s. and $F_{X} \in \mathscr{L} \cap \mathscr{D}$, is again in $\mathscr{L} \cap \mathscr{D}$ (see Lemmas 3.9 and 3.10 in [18]); second, the result as in (4.15) but with products $\Theta_{k} X_{k}$ replaced by the (dependent) r.v.s Y_{k}, such that $F_{Y_{k}} \in \mathscr{L} \cap \mathscr{D}$, $k=1, \ldots, n$. Alternatively, the relation in (4.15) can be derived replacing the Θ_{k} 's by w_{k} 's and then proving the corresponding relations uniformly with respect to $\bar{w}_{n}=\left(w_{1}, \ldots, w_{n}\right)$. For instance, using Proposition 5.1(ii) and representation

$$
\mathrm{P}\left(S_{n}^{w}>x\right)=\mathrm{P}\left(S_{n}^{w *}>x\right)+\sum_{1 \leq l<m \leq n} \theta_{l m} \int_{w_{1} y_{1}+\cdots+w_{n} y_{n}>x} \mathrm{~d} H_{l m}\left(y_{1}, \ldots, y_{n}\right),
$$

where $S_{n}^{w *}:=w_{1} X_{1}^{*}+\cdots+w_{n} X_{n}^{*}$ and $H_{l m}\left(y_{1}, \ldots, y_{n}\right):=F_{1}\left(y_{1}\right) \cdots F_{n}\left(y_{n}\right)$ $\overline{F_{l}}\left(y_{l}\right) \overline{F_{m}}\left(y_{m}\right)$, or directly applying (5.1) below to the pSQAI r.v.s, we have that for the FGM copula case it holds

$$
\mathrm{P}\left(S_{n}^{w}>x\right) \sim \mathrm{P}\left(S_{n}^{w *}>x\right) \sim \sum_{k=1}^{n} \bar{F}_{k}\left(x / w_{k}\right)
$$

uniformly for $\bar{w}_{n} \in[a, b]^{n}$. Hence

$$
\begin{aligned}
& \mathrm{P}\left(S_{n}^{\Theta}>x\right) \\
\sim & \int_{[a, b]^{n}} \cdots \int\left(\mathrm{P}\left(w_{1} X_{1}>x\right)+\cdots+\mathrm{P}\left(w_{n} X_{n}>x\right)\right) \mathrm{P}\left(\Theta_{1} \in \mathrm{~d} w_{1}, \ldots, \Theta_{n} \in \mathrm{~d} w_{n}\right) \\
= & \mathrm{P}\left(\Theta_{1} X_{1}>x\right)+\cdots+\mathrm{P}\left(\Theta_{n} X_{n}>x\right)
\end{aligned}
$$

Obviously, the last approach leads to a weaker result as it requires the restriction $\Theta_{k} \in[a, b] \subset(0, b], k=1, \ldots, n$, unless the d.f.s F_{1}, \ldots, F_{n} are in the class \mathscr{C}, see Proposition 5.1(ii).

5. Auxiliary results

In this section we present some useful statements, which are used proving the corresponding results in Section 4.2.

Proposition 5.1. Suppose that Y_{1}, \ldots, Y_{n} are real-valued independent r.v.s with corresponding distributions $F_{Y_{1}}, \ldots, F_{Y_{n}}$.
(i) If $F_{Y_{k}} \in \mathscr{L} \cap \mathscr{D}, k=1, \ldots, n$, then

$$
\begin{equation*}
\mathrm{P}\left(w_{1} Y_{1}+\cdots+w_{n} Y_{n}>x\right) \sim \sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right) \tag{5.1}
\end{equation*}
$$

uniformly for $\bar{w}_{n} \in[a, b]^{n}$, where $0<a \leq b<\infty$.
(ii) If $F_{Y_{k}} \in \mathscr{C}, k=1, \ldots, n$, then relation (5.1) holds uniformly for $\bar{w}_{n} \in$ $(0, b]^{n}, 0<b<\infty$.

Proof. (i) The proof of this fact follows from Theorem 2.1 in [13] (note that Li's result also holds for more general, pSQAI, dependence structure, see (4.14)).
(ii) Denote $S_{Y, n}^{w}:=w_{1} Y_{1}+\cdots+w_{n} Y_{n}$ and write for any $\delta \in(0,1)$ and $x>0$

$$
\begin{aligned}
\mathrm{P}\left(S_{Y, n}^{w}>x\right) \geq & \sum_{k=1}^{n} \mathrm{P}\left(S_{Y, n}^{w}>x, w_{k} Y_{k}>x+\delta x\right) \\
& -\sum_{1 \leq i<j \leq n} \mathrm{P}\left(w_{i} Y_{i}>x+\delta x, w_{j} Y_{j}>x+\delta x\right) \\
= & p_{1}^{w}(x)-p_{2}^{w}(x) .
\end{aligned}
$$

Obviously,

$$
\begin{equation*}
p_{2}^{w}(x) \leq\left(\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)\right)^{2}=o\left(\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)\right) \tag{5.2}
\end{equation*}
$$

uniformly in $\bar{w}_{n} \in(0, b]^{n}$. For $p_{1}^{w}(x)$ we have

$$
p_{1}^{w}(x) \geq \sum_{k=1}^{n} \mathrm{P}\left(S_{Y, n}^{w}-w_{k} Y_{k}>-\delta x, w_{k} Y_{k}>x+\delta x\right)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n} \mathrm{P}\left(w_{k} Y_{k}>x+\delta x\right)-\sum_{k=1}^{n} \mathrm{P}\left(S_{Y, n}^{w}-w_{k} Y_{k} \leq-\delta x, w_{k} Y_{k}>x+\delta x\right) \\
& =: p_{11}^{w}(x)-p_{12}^{w}(x) .
\end{aligned}
$$

Here,
(5.3)
$\liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in(0, b]^{n}} \frac{p_{11}^{w}(x)}{\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)} \geq \liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in(0, b]^{n}} \min _{1 \leq k \leq n} \frac{\bar{F}_{Y_{k}}\left((1+\delta) x / w_{k}\right)}{\bar{F}_{Y_{k}}\left(x / w_{k}\right)}$,
where, for any $k=1, \ldots, n$,

$$
\begin{align*}
\liminf _{x \rightarrow \infty} \inf _{w_{k} \in(0, b]} \frac{\bar{F}_{Y_{k}}\left((1+\delta) x / w_{k}\right)}{\bar{F}_{Y_{k}}\left(x / w_{k}\right)} & \geq \lim _{x \rightarrow \infty} \inf _{z \geq x / b} \frac{\bar{F}_{Y_{k}}((1+\delta) z)}{\bar{F}_{Y_{k}}(z)} \\
& =\liminf _{x \rightarrow \infty} \frac{\bar{F}_{Y_{k}}((1+\delta) x)}{\bar{F}_{Y_{k}}(x)} \longrightarrow 1 \text { if } \quad \delta \searrow 0 \tag{5.4}
\end{align*}
$$

by the definition of class \mathscr{C}. We get from (5.3)-(5.4) that

$$
\begin{equation*}
\lim _{\delta \searrow 0} \liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in(0, b]^{n}} \frac{p_{11}^{w}(x)}{\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)} \geq 1 . \tag{5.5}
\end{equation*}
$$

For the term $p_{12}^{w}(x)$ we get

$$
\begin{align*}
& p_{12}^{w}(x) \leq \sum_{k=1}^{n} \mathrm{P}\left(S_{Y, n}^{w}-w_{k} Y_{k} \leq-\delta x\right) \mathrm{P}\left(w_{k} Y_{k}>x\right) \\
&(5.6) \quad \leq \mathrm{P}\left(b\left(Y_{1}^{-}+\cdots+Y_{n}^{-}\right) \leq-\delta x\right) \sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)=o(1) \sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right) \tag{5.6}
\end{align*}
$$

uniformly in $\bar{w}_{n} \in(0, b]^{n}$. (5.2), (5.5) and (5.6) imply

$$
\liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in(0, b]^{n}} \frac{\mathrm{P}\left(S_{Y, n}^{w}>x\right)}{\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)} \geq \liminf _{x \rightarrow \infty} \inf _{\bar{w}_{n} \in(0, b]^{n}} \frac{p_{1}^{w}(x)}{\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)} \geq 1
$$

In order to show the upper asymptotic bound in (5.1), write

$$
\begin{aligned}
\mathrm{P}\left(S_{Y, n}^{w}>x\right)= & \mathrm{P}\left(S_{Y, n}^{w}>x, \bigcup_{i<j}\left\{w_{i} Y_{i}>\delta x /(n-1), w_{j} Y_{j}>\delta x /(n-1)\right\}\right) \\
& +\mathrm{P}\left(S_{Y, n}^{w}>x, \bigcap_{i<j}\left\{\left\{w_{i} Y_{i} \leq \delta x /(n-1)\right\} \cup\left\{w_{j} Y_{j} \leq \delta x /(n-1)\right\}\right\}\right) \\
\leq & \sum_{i<j} \mathrm{P}\left(w_{i} Y_{i}>\delta x /(n-1)\right) \mathrm{P}\left(w_{j} Y_{j}>\delta x /(n-1)\right) \\
& +\mathrm{P}\left(\bigcup_{k=1}^{n}\left\{w_{k} Y_{k}>(1-\delta) x\right\}\right) \\
\leq & \left(\sum_{i=1}^{n} \mathrm{P}\left(w_{i} Y_{i}>\delta x /(n-1)\right)\right)^{2}+\sum_{k=1}^{n} \mathrm{P}\left(w_{k} Y_{k}>(1-\delta) x\right) \\
= & r_{1}^{w}(x)+r_{2}^{w}(x),
\end{aligned}
$$

where we have used that for any sets A_{1}, \ldots, A_{n} it holds $\bigcap_{1 \leq i<j \leq n}\left\{A_{i} \bigcup A_{j}\right\} \subset$ $\bigcup_{i=1}^{n} \bigcap_{j \neq i} A_{j}$. It is easy to see that $r_{1}^{w}(x)=o(1) \sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)$ and, by the definition of class \mathscr{C},

$$
\lim _{\delta \searrow 0} \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{n} \in(0, b]^{n}} \frac{r_{2}^{w}(x)}{\sum_{k=1}^{n} \bar{F}_{Y_{k}}\left(x / w_{k}\right)} \leq 1
$$

This and (5.7) completes the proof of proposition.
Remark 5.1. Uniform asymptotic relation (5.1) was investigated earlier in a number of papers. Tang and Tsitsiashvili [19] obtained this relation for independent r.v.s with common subexponential d.f. and weights $\bar{w}_{n} \in[a, b]^{n}$, $0<a \leq b<\infty$. Subexponential r.v.s (independent or dependent) were also investigated in [10, 21, 28]. Liu et al. [16] and Wang et al. [22] proved relation (5.1) for identically distributed r.v.s from class $\mathscr{L} \cap \mathscr{D}$ allowing some dependence among primary variables with weights $\bar{w}_{n} \in[a, b]^{n}$. Li [13] showed that this uniform equivalence holds for nonidentically distributed (with some dependence) r.v.s from the class \mathscr{C} or $\mathscr{L} \cap \mathscr{D}$ and $\bar{w}_{n} \in[a, b]^{n}$.

Proposition 5.2. Suppose that Y_{1}, Y_{2}, \ldots are real-valued independent r.v.s with corresponding distributions $F_{Y_{1}}, F_{Y_{2}}, \ldots$ and $a_{i}:(-\infty, \infty) \rightarrow[0, \infty), i=$ 1,2 , are measurable functions.
(i) If $0<\mathrm{E} a_{1}\left(Y_{1}\right)<\infty, F_{Y_{i}} \in \mathscr{L} \cap \mathscr{D}, i=2, \ldots, k$, where $k \geq 2$ is an arbitrary integer, and

$$
\begin{equation*}
\mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{Y_{1}>x\right\}}=o\left(\overline{F_{Y_{2}}}(x)+\cdots+\overline{F_{Y_{k}}}(x)\right), \tag{5.8}
\end{equation*}
$$

then, uniformly for $\bar{w}_{k} \in[a, b]^{k}, 0<a \leq b<\infty$, it holds

$$
\mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \sim \operatorname{E} a_{1}\left(Y_{1}\right) \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x\right)
$$

$$
\begin{equation*}
\sim \mathrm{E} a_{1}\left(Y_{1}\right)\left(\overline{F_{Y_{2}}}\left(x / w_{2}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right) ; \tag{5.9}
\end{equation*}
$$

(ii) If $0<E a_{i}\left(Y_{i}\right)<\infty, F_{Y_{i}} \in \mathscr{D}, i=1,2$, and

$$
\begin{equation*}
\mathrm{E} a_{i}\left(Y_{i}\right) \mathbb{I}_{\left\{Y_{i}>x\right\}}=o\left(\overline{F_{Y_{j}}}(x)\right), i, j=1,2, i \neq j \tag{5.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+w_{2} Y_{2}>x\right\}}=o\left(\overline{F_{Y_{1}}}\left(x / w_{1}\right)+\overline{F_{Y_{2}}}\left(x / w_{2}\right)\right) \tag{5.11}
\end{equation*}
$$

uniformly for $\bar{w}_{2} \in(0, b]^{2}$.
(iii) If $0<\operatorname{Ea}_{i}\left(Y_{i}\right)<\infty, i=1,2, F_{Y_{i}} \in \mathscr{L} \cap \mathscr{D}, i=3, \ldots, k$, where $k \geq 3$ is an arbitrary integer, and

$$
\begin{equation*}
\mathrm{E} a_{i}\left(Y_{i}\right) \mathbb{I}_{\left\{Y_{i}>x\right\}}=o\left(\overline{F_{Y_{3}}}(x)+\cdots+\overline{F_{Y_{k}}}(x)\right), i=1,2 \tag{5.12}
\end{equation*}
$$

then, uniformly for $\bar{w}_{k} \in[a, b]^{k}, 0<a \leq b<\infty$, it holds

$$
\begin{align*}
& \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \\
\sim & \mathrm{E} a_{1}\left(Y_{1}\right) \mathrm{E} a_{2}\left(Y_{2}\right)\left(\overline{F_{Y_{3}}}\left(x / w_{3}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right) . \tag{5.13}
\end{align*}
$$

Proof. (i) By Corollary 3.1 we can choose some positive function $K_{1}(x)$, $K_{1}(x) \leq x$ such that $K_{1}(x) \nearrow \infty$ and

$$
\begin{equation*}
\mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x \pm K_{1}(x)\right) \sim \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x\right) \tag{5.14}
\end{equation*}
$$

uniformly for $w_{2}, \ldots, w_{k} \in[a, b]$. Next, write

$$
\begin{aligned}
& \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \\
= & \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}}\left(\mathbb{I}_{\left\{w_{1}\left|Y_{1}\right| \leq K_{1}(x)\right\}}+\mathbb{1}_{\left\{w_{1}\left|Y_{1}\right|>K_{1}(x)\right\}}\right) \\
= & i_{1}(x)+i_{2}(x) .
\end{aligned}
$$

By (5.14) we have

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{k} \in[a, b]^{k}} \frac{i_{1}(x)}{\operatorname{Ea} a_{1}\left(Y_{1}\right) \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x\right)} \\
\leq & \limsup _{x \rightarrow \infty} \sup _{\bar{w}_{k} \in[a, b]^{k}} \frac{\mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x-K_{1}(x)\right)}{\mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x\right)}=1 .
\end{aligned}
$$

This, together with Proposition 5.1(i), yields

$$
i_{1}(x) \lesssim \mathrm{E} a_{1}\left(Y_{1}\right)\left(\overline{F_{Y_{2}}}\left(x / w_{2}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right)
$$

uniformly in $\bar{w}_{k} \in[a, b]^{k}$.
For the lower bound, due to (5.14) and Proposition 5.1(i), we can write

$$
\begin{aligned}
i_{1}(x) & \geq \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x+K_{1}(x), w_{1}\left|Y_{1}\right| \leq K_{1}(x)\right\}} \\
& =\mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{1}\left|Y_{1}\right| \leq K_{1}(x)\right\}} \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x+K_{1}(x)\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right) \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right)\left(\overline{F_{Y_{2}}}\left(x / w_{2}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right)
\end{aligned}
$$

uniformly in $\bar{w}_{k} \in[a, b]^{k}$.
It remains to show that $i_{2}(x)=o\left(\overline{F_{Y_{2}}}\left(x / w_{2}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right)$. Write

$$
\begin{aligned}
i_{2}(x) \leq & \operatorname{Ea} a_{1}\left(Y_{1}\right)\left(\mathbb{I}_{\left\{w_{1} Y_{1}>x / 2\right\}}+\mathbb{I}_{\left\{w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x / 2\right\}}\right) \mathbb{I}_{\left\{w_{1}\left|Y_{1}\right|>K_{1}(x)\right\}} \\
\leq & \operatorname{Ea}_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{Y_{1}>x /(2 b)\right\}} \\
& +\operatorname{Ea}\left(Y_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{\left|Y_{1}\right|>K_{1}(x) / b\right\}} \mathrm{P}\left(w_{2} Y_{2}+\cdots+w_{k} Y_{k}>x / 2\right) .\right.
\end{aligned}
$$

Hence, by assumption (5.8), Proposition 5.1(i) and the definition of class \mathscr{D} we get

$$
\begin{aligned}
i_{2}(x) \lesssim & o\left(\overline{F_{Y_{2}}}(x /(2 b))+\cdots+\overline{F_{Y_{k}}}(x /(2 b))\right)+o(1)\left(\overline{F_{Y_{2}}}\left(x /\left(2 w_{2}\right)\right)\right. \\
& \left.+\cdots+\overline{F_{Y_{k}}}\left(x /\left(2 w_{k}\right)\right)\right) \\
= & o\left(\overline{F_{Y_{2}}}\left(x / w_{2}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right)
\end{aligned}
$$

uniformly in $\bar{w}_{k} \in[a, b]^{k}$.
(ii) We have by (5.10) and $F_{Y_{i}} \in \mathscr{D}, i=1,2$, that

$$
\begin{aligned}
& \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+w_{2} Y_{2}>x\right\}} \\
\leq & \mathrm{E} a_{2}\left(Y_{2}\right) \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{Y_{1}>x /\left(2 w_{1}\right)\right\}}+\mathrm{E} a_{1}\left(Y_{1}\right) \mathrm{E} a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{Y_{2}>x /\left(2 w_{2}\right)\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{E} a_{2}\left(Y_{2}\right) o\left(\overline{F_{Y_{2}}}\left(x /\left(2 w_{1}\right)\right)\right)+\mathrm{E} a_{1}\left(Y_{1}\right) o\left(\overline{F_{Y_{1}}}\left(x /\left(2 w_{2}\right)\right)\right) \\
& =o\left(\overline{F_{Y_{1}}}\left(x / w_{1}\right)+\overline{F_{Y_{2}}}\left(x / w_{2}\right)\right)
\end{aligned}
$$

uniformly for $\bar{w}_{2} \in(0, b]^{2}$.
(iii) Choose $K_{2}(x)>0$ such that $K_{2}(x) \leq x, K_{2}(x) \nearrow \infty$ and

$$
\begin{equation*}
\mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x \pm K_{2}(x)\right) \sim \mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x\right) \tag{5.15}
\end{equation*}
$$

uniformly for $w_{3}, \ldots, w_{k} \in[a, b]$. Now, split

$$
\begin{aligned}
& \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \\
= & \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}}\left(\mathbb{I}_{\left\{\left|w_{1} Y_{1}+w_{2} Y_{2}\right| \leq K_{2}(x)\right\}}\right. \\
& \left.+\mathbb{1}_{\left\{\left|w_{1} Y_{1}+w_{2} Y_{2}\right|>K_{2}(x)\right\}}\right) \\
= & k_{1}(x)+k_{2}(x) .
\end{aligned}
$$

Similarly to case (i), we can show that

$$
\begin{aligned}
& k_{1}(x) \sim \operatorname{E} a_{1}\left(Y_{1}\right) \mathrm{E} a_{2}\left(Y_{2}\right)\left(\overline{F_{Y_{3}}}\left(x / w_{3}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right), \\
& k_{2}(x)=o\left(\overline{F_{Y_{3}}}\left(x / w_{3}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right) .
\end{aligned}
$$

Indeed, by (5.15) and Proposition 5.1(i),

$$
\begin{aligned}
k_{1}(x) & \leq \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x-K_{2}(x)\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right) \operatorname{E} a_{2}\left(Y_{2}\right) \mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right) \operatorname{E} a_{2}\left(Y_{2}\right)\left(\overline{F_{Y_{3}}}\left(x / w_{3}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right), \\
k_{1}(x) & \geq \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{\left|w_{1} Y_{1}+w_{2} Y_{2}\right| \leq K_{2}(x)\right\}} \mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x+K_{2}(x)\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right) \operatorname{E} a_{2}\left(Y_{2}\right) \mathrm{P}\left(w_{3} Y_{3}+\cdots+w_{k} Y_{k}>x\right) \\
& \sim \mathrm{E} a_{1}\left(Y_{1}\right) \mathrm{E} a_{2}\left(Y_{2}\right)\left(\overline{F_{Y_{3}}}\left(x / w_{3}\right)+\cdots+\overline{F_{Y_{k}}}\left(x / w_{k}\right)\right)
\end{aligned}
$$

uniformly for $\bar{w}_{k} \in[a, b]^{k}$, where we have used that

$$
\begin{aligned}
& \quad \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{\left|w_{1} Y_{1}+w_{2} Y_{2}\right|>K_{2}(x)\right\}} \\
& \leq \\
& \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{b\left|Y_{1}\right|>K_{2}(x) / 2\right\}} \mathrm{E} a_{2}\left(Y_{2}\right) \\
& \quad+\mathrm{E} a_{2}\left(Y_{2}\right) \mathbb{I}_{\left.b\left|Y_{2}\right|>K_{2}(x) / 2\right\}} \mathrm{E} a_{1}\left(Y_{1}\right) \rightarrow 0 .
\end{aligned}
$$

For $k_{2}(x)$ we have

$$
\begin{aligned}
k_{2}(x) \leq & \mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+w_{2} Y_{2}>x / 2\right\}} \\
& +{\mathrm{E} a_{1}\left(Y_{1}\right) a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{\left|w_{1} Y_{1}+w_{2} Y_{2}\right|>K_{2}(x)\right\}} \mathrm{P}\left(\sum_{i=3}^{k} w_{i} Y_{i}>x / 2\right)}_{=} k_{21}(x)+k_{22}(x),
\end{aligned}
$$

where, by assumption (5.12), Proposition 5.1(i) and the definition of class \mathscr{D},

$$
k_{21}(x) \leq \mathrm{E} a_{2}\left(Y_{2}\right) \mathrm{E} a_{1}\left(Y_{1}\right) \mathbb{I}_{\left\{w_{1} Y_{1}>x / 4\right\}}+\mathrm{E} a_{1}\left(Y_{1}\right) \mathrm{E} a_{2}\left(Y_{2}\right) \mathbb{I}_{\left\{w_{2} Y_{2}>x / 4\right\}}
$$

$$
\begin{aligned}
& =\mathrm{E} a_{2}\left(Y_{2}\right) o\left(\sum_{i=3}^{k} \overline{\bar{Y}_{Y_{i}}}\left(x /\left(4 w_{1}\right)\right)\right)+\mathrm{E} a_{1}\left(Y_{1}\right) o\left(\sum_{i=3}^{k} \overline{\bar{F}_{Y_{i}}}\left(x /\left(4 w_{2}\right)\right)\right) \\
& =o\left(\sum_{i=3}^{k} \overline{\bar{F}_{Y_{i}}}\left(x / w_{i}\right)\right)
\end{aligned}
$$

and

$$
k_{22}(x)=o(1) \sum_{i=3}^{k} \overline{F_{Y_{i}}}\left(x /\left(2 w_{i}\right)\right)
$$

uniformly for $\bar{w}_{k} \in[a, b]^{k}$. The proof is complete.
Corollary 5.1. Assume that $k \geq 2$ and Y_{1}, \ldots, Y_{k} are real-valued independent r.v.s, such that $F_{Y_{i}} \in \mathscr{L} \cap \mathscr{D}, i=1, \ldots, k$. Let $a_{i}:(-\infty, \infty) \rightarrow[0, \infty), i=$ $1, \ldots, k$, be measurable functions such that $0<\mathrm{E} a_{i}\left(Y_{i}\right)<\infty$ for each i and let

$$
\begin{equation*}
\operatorname{E} a_{i}\left(Y_{i}\right) \mathbb{I}_{\left\{Y_{i}>x\right\}}=o\left(\overline{F_{Y_{j}}}(x)\right), i, j=1, \ldots, k, i \neq j . \tag{5.16}
\end{equation*}
$$

Then, uniformly for $\bar{w}_{k} \in[a, b]^{k}$, for all $l=1, \ldots, k$ it holds

$$
\mathrm{E} a_{l}\left(Y_{l}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \sim \operatorname{Ea} a_{l}\left(Y_{l}\right) \sum_{\substack{j=1 \\ j \neq l}}^{k} \overline{F_{Y_{j}}}\left(x / w_{j}\right)
$$

and for all $l, m, 1 \leq l<m \leq k$, it holds

$$
\begin{array}{rll}
& \operatorname{Ea} a_{l}\left(Y_{l}\right) a_{m}\left(Y_{m}\right) \mathbb{I}_{\left\{w_{1} Y_{1}+\cdots+w_{k} Y_{k}>x\right\}} \\
= & \begin{cases}o\left(\overline{F_{Y_{1}}}\left(x / w_{1}\right)+\overline{F_{Y_{2}}}\left(x / w_{2}\right)\right), & k=2, \\
\operatorname{E} a_{l}\left(Y_{l}\right) \operatorname{E} a_{m}\left(Y_{m}\right) \sum_{\substack{j=1 \\
j \neq l, j \neq m}}^{k} \overline{F_{Y_{j}}}\left(x / w_{j}\right)(1+o(1)), & k \geq 3 .\end{cases} \tag{5.17}
\end{array}
$$

Proof. Observe that (5.16) with $i=1$ implies all three conditions (5.8), (5.10), (5.12) with $i=1$. Then the statement follows straightforwardly from Proposition 5.2.

Acknowledgement. We are grateful to the referee for his/her useful comments and suggestions leading to an improvement of the paper.

References

[1] A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scand. Actuar. J. 2010 (2010), no. 2, 93-104.
[2] J. Cai and Q. Tang, On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications, J. Appl. Probab. 41 (2004), no. 1, 117-130.
[3] Y. Chen, K. W. Ng, and K. C. Yuen, The maximum of randomly weighted sums with long tails in insurance and finance, Stoch. Anal. Appl. 29 (2011), no. 6, 1033-1044.
[4] Y. Chen and K. C. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stoch. Models 25 (2009), no. 1, 76-89.
[5] P. Embrechts and C. M. Goldie, On closure and factorization properties of subexponential and related distributions, J. Austral. Math. Soc. Ser. A 29 (1980), no. 2, 243-256.
[6] S. Foss, D. Korshunov, and S. Zachary, Convolutions of long-tailed and subexponential distributions, J. Appl. Probab. 46 (2009), no. 3, 756-767.
[7] Q. Gao and Y. Wang, Randomly weighted sums with dominated varying-tailed increments and application to risk theory, J. Korean Statist. Soc. 39 (2010), no. 3, 305-314.
[8] J. Geluk and K. W. Ng, Tail behavior of negatively associated heavy-tailed sums, J. Appl. Probab. 43 (2006), no. 2, 587-593.
[9] J. Geluk and Q. Tang, Asymptotic tail probabilities of sums of dependent subexponential random variables, J. Theoret. Probab. 22 (2009), no. 4, 871-882.
[10] T. Jiang, Y. Wang, Y. Chen, and H. Xu, Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model, Insurance Math. Econom. 64 (2015), 45-53.
[11] F. Kong and G. Zong, The finite-time ruin probability for ND claims with constant interest force, Statist. Probab. Lett. 78 (2008), no. 17, 3103-3109.
[12] J. R. Leslie, On the non-closure under convolution of the subexponential family, J. Appl. Probab. 26 (1989), no. 1, 58-66.
[13] J. Li, On pairwise quasi-asymptotically independent random variables and their applications, Statist. Probab. Lett. 83 (2013), no. 9, 2081-2087.
[14] J. Li, Q. Tang, and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Adv. in Appl. Probab. 42 (2010), no. 4, 1126-1146.
[15] J. Li and R. Wu, Asymptotic ruin probabilities of the renewal model with constant interest force and dependent heavy-tailed claims, Acta Math. Appl. Sin. Engl. Ser. 27 (2011), no. 2, 329-338.
[16] X. Liu, Q. Gao, and Y. Wang, A note on a dependent risk model with constant interest rate, Statist. Probab. Lett. 82 (2012), no. 4, 707-712.
[17] K. W. Ng, Q. Tang, and H. Yang, Maxima of sums of heavy-tailed random variables, Astin Bull. 32 (2002), no. 1, 43-55.
[18] Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Process. Appl. 108 (2003), no. 2, 299-325.
[19] , Randomly weighted sums of subexponential random variables with application to ruin theory, Extremes 6 (2003), no. 3, 171-188.
[20] Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes 17 (2014), no. 3, 467-493.
[21] K. Wang, Randomly weighted sums of dependent subexponential random variables, Lith. Math. J. 51 (2011), no. 4, 573-586.
[22] K. Wang, Y. Wang, and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab. 15 (2013), no. 1, 109-124.
[23] T. Watanabe and K. Yamamuro, Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure, Electron. J. Probab. 15 (2010), no. 2, 44-74.
[24] H. Xu, S. Foss, and Y. Wang, Convolution and convolution-root properties of long-tailed distributions, Extremes 18 (2015), no. 4, 605-628.
[25] Y. Yang, R. Leipus, and J. Šiaulys, Tail probability of randomly weighted sums of subexponential random variables under a dependence structure, Statist. Probab. Lett. 82 (2012), no. 9, 1727-1736.
[26] , Closure property and maximum of randomly weighted sums with heavy tailed increments, Statist. Probab. Lett. 91 (2014), 162-170.
[27] C. Zhang, Uniform asymptotics for the tail probability of weighted sums with heavy tails, Statist. Probab. Lett. 94 (2014), 221-229.
[28] C. Zhu and Q. Gao, The uniform approximation of the tail probability of the randomly weighted sums of subexponential random variables, Statist. Probab. Lett. 78 (2008), no. 15, 2552-2558.

Lina Dindiené
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko 24, Vilnius LT-03225, Lithuania
E-mail address: lina.dindiene@gmail.com
Remigijus Leipus
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko 24, Vilnius LT-03225, Lithuania
AND
Institute of Mathematics and Informatics
Vilnius University
Akademijos 4, Vilnius LT-08663, Lithuania
E-mail address: remigijus.leipus@mif.vu.lt
Jonas Šiaulys
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko 24, Vilnius LT-03225, Lithuania
E-mail address: jonas.siaulys@mif.vu.lt

[^0]: Received November 25, 2016; Revised March 18, 2017; Accepted June 19, 2017.
 2010 Mathematics Subject Classification. 60E99, 62E20, 62H20.
 Key words and phrases. randomly weighted sum, long-tail distribution, copula, FGM copula.

