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ASYMPTOTIC RUIN PROBABILITIES IN

A GENERALIZED JUMP-DIFFUSION RISK MODEL

WITH CONSTANT FORCE OF INTEREST

Qingwu Gao and Di Bao

Abstract. This paper studies the asymptotic behavior of the finite-time
ruin probability in a jump-diffusion risk model with constant force of in-
terest, upper tail asymptotically independent claims and a general count-
ing arrival process. Particularly, if the claim inter-arrival times follow a
certain dependence structure, the obtained result also covers the case of
the infinite-time ruin probability.

1. Introduction

In this paper, we consider the asymptotic ruin probabilities in a generalized
jump-diffusion risk model with constant force of interest, where the claim sizes
{Xi, i ≥ 1} are a sequence of nonnegative, but not necessarily independent,
random variables (r.v.s) with distributions Fi, i ≥ 1, respectively, while the
claim arrival process {N(t), t ≥ 0} is a general counting process, independent
of {Xi, i ≥ 1}. Hence, the aggregate claim amount up to time t ≥ 0 is

S(t) =

N(t)
∑

i=1

Xi

with S(t) = 0 if N(t) = 0. Assume that the total amount of premiums accu-
mulated up to time t ≥ 0, denoted by C(t), is a nonnegative and nondecreasing
stochastic process with C(0) = 0 and C(t) < ∞ almost surely (a.s.) for every
0 ≤ t <∞, and that the diffusion process, as a perturbed term, {B(t), t ≥ 0} is
a standard Brownian motion with volatility parameter σ ≥ 0 and independent
of the other sources of randomness. We notice that in practice, the diffusion-
perturbed term can be interpreted as an additional uncertainty of the aggregate
claims or the premium income of an insurance company. Let r ≥ 0 be the con-
stant force of interest and x ≥ 0 be the insurer’s initial reserve. Then the total
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reserve up to time t ≥ 0, denoted by Ur(t), satisfies
(1.1)

Ur(t) = xert +

∫ t

0

er(t−s)dC(s)−

∫ t

0

er(t−s)dS(s) + σ

∫ t

0

er(t−s)dB(s), t ≥ 0.

Clearly, one can see that for any fixed 0 < t <∞,

(1.2) 0 ≤ ˜C(t) =

∫ t

0

e−rsdC(s) <∞ a.s.,

where ˜C(t) denotes the discounted value of premiums accumulated up to time
t > 0.

As usual, the ruin probability within a finite time T > 0 is defined as

(1.3) ψr(x, T ) = P (Ur(t) < 0 for some 0 ≤ t ≤ T ),

and the infinite-time ruin probability is

(1.4) ψr(x,∞) = P (Ur(t) < 0 for some 0 ≤ t <∞).

For later use, we denote the claim inter-arrival times by {θi, i ≥ 1}. Then

τk =
∑k

i=1 θi, k ≥ 1, are the arrival times of successive claims, and generate a
counting process

(1.5) N(t) =

∞
∑

k=1

1
{τk≤t}, t ≥ 0,

where 1A is the indicator function of an event A.
To our knowledge, the asymptotic ruin probabilities with constant interest

and heavy-tailed claims were investigated extensively. For example, Veraver-
beke [22] and Jiang and Yan [12] considered the compound Poisson model with
diffusion, while Tang [18, 19], Hao and Tang [11], etc., considered the standard
renewal model with no diffusion (i.e., σ = 0). Recently, many researchers de-
voted themselves to a risk model with dependent claim sizes and/or dependent
inter-arrival times, see Yang and Wang [26], Li and Wu [15], Liu et al. [16],
Wang et al. [25], Gao and Liu [9], Gao et al. [8], etc., where there is no diffu-
sion term. Also, Li et al. [14] and Chen and Yuen [4] allowed some dependence
structures between the claim sizes and their inter-arrival times. Therein, Wang
et al. [25] introduced a dependence structure below.

Definition 1.1. Say that r.v.s {Xi, i ≥ 1} are widely upper orthant dependent
(WUOD), if there exists a sequence of finite positive numbers {gU (n), n ≥ 1}
such that for each n ≥ 1 and all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P

(

n
⋂

i=1

{

Xi > xi

}

)

≤ gU (n)

n
∏

i=1

P (Xi > xi).
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If we change the above inequality into

P

(

n
⋂

i=1

{

Xi ≤ xi

}

)

≤ gL(n)

n
∏

i=1

P (Xi ≤ xi),

where {gL(n), n ≥ 1} is another sequence of finite positive numbers, then
{Xi : i ≥ 1} are said to be widely lower orthant dependent (WLOD).

Clearly, if {Xi, i ≥ 1} are WLOD, then {−Xi, i ≥ 1} are WUOD, and for
each n ≥ 1 and any s > 0,

(1.6) E exp

{

−s
n
∑

i=1

Xi

}

≤ gL(n)

n
∏

i=1

Ee−sXi .

Besides, Geluk and Tang [10] proposed a more general dependence structure
as follows.

Definition 1.2. Say that r.v.s {Xi, i ≥ 1} are upper tail asymptotically inde-
pendent (UTAI), if P (Xi > x) > 0 for all x ∈ (−∞,∞), i ≥ 1, and

lim
min {xi,xj}→∞

P (Xi > xi|Xj > xj) = 0 for all 1 ≤ i 6= j <∞.

If the above relation is changed to

lim
min {xi,xj}→∞

P (|Xi| > xi|Xj > xj) = 0 for all 1 ≤ i 6= j <∞,

then we say that {Xi, i ≥ 1} are tail asymptotically independent (TAI).

The UTAI and TAI structures were also studied by Liu at al. [16], Chen
et al. [2], Gao and Liu [9], and Li [13]. Clearly, the UTAI structure properly
covers the WUOD structure, see Example 3.1 of Liu et al. [16]. In addition,
Chen and Yuen [3] put forward a similar dependence structure, i.e., pairwise
quasi-asymptotic independence (PQAI), and obtained some results that are
relevant for the current study.

Henceforth, all limit relationships are for x → ∞ unless stated otherwise.
For two positive functions a(·) and b(·) satisfying C− = lim inf a(x)/b(x) ≤
lim sup a(x)/b(x) = C+, we write a(x) & b(x) if C− ≥ 1, write a(x) . b(x) if
C+ ≤ 1, write a(x) ∼ b(x) if both, write a(x) = o(1)b(x) if C+ = 0, and write
a(x) ≍ b(x) if 0 < C− ≤ C+ <∞. For a distribution F and any y > 0, we set

J+
F = − lim

y→∞

logF ∗(y)/ log y and J−

F = − lim
y→∞

logF
∗

(y)/ log y

with F ∗(y) = lim infx→∞ F (xy)/F (x) and F
∗

(y) = lim supx→∞
F (xy)/F (x).

In the paper, we assume that the claim-size distributions on [0,∞) are heavy-
tailed, which can model the large claims. An important class of heavy-tailed
distributions is the subexponential class, we say that a distribution F on [0,∞)

is subexponential, denoted by F ∈ S, if F ∗2(x) ∼ 2F (x), where F ∗2 is the 2-
fold convolution of F . Clearly, if F ∈ S then F is long-tailed, denoted by
F ∈ L and characterized by F (x+ y) ∼ F (x) for all y > 0. Another important
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class of heavy-tailed distributions is the dominated variation class D, we say
that a distribution F on [0,∞) belongs to the class D, denoted by F ∈ D, if

F
∗

(y) <∞ for all y > 0. A slightly smaller subclass of L ∩D is the consistent
variation class C, we say that a distribution F on [0,∞) belongs to the class C,

denoted by F ∈ C, if limyց1 F ∗(y) = 1, or equivalently, limyր1 F
∗

(y) = 1. In
conclusion, C ⊂ L ∩ D ⊂ S ⊂ L. For more details of heavy-tailed distributions
and their applications, we refer the readers to Bingham et al. [1] and Embrechts
et al. [7].

We know that, Jiang and Yan [12] considered the compound Poisson risk
model perturbed by diffusion, and established an asymptotic formula for the
finite-time ruin probability with the claim-size distribution F ∈ S. Recently,
for a nonstandard renewal risk model with diffusion, UTAI claim sizes and
WLOD inter-arrival times, Chen et al. [2] in their Corollary 2.1 gave a uni-
formly asymptotic formula of the finite-time ruin probability for times in a
finite interval, if F ∈ L ∩ D, and {C(t), t ≥ 0} and {S(t), t ≥ 0} are mutually
independent.

Inspired by the references above, in this paper we aim to investigate the
finite-time and infinite-time ruin probabilities ψr(x, T ), 0 < T ≤ ∞, in the
generalized jump-diffusion risk model (1.1), where two cases are considered,
one is that the premium process {C(t), t ≥ 0} is independent of the other
sources of randomness, and the other is that {C(t), t ≥ 0} is not necessarily
so. The following are the main results, among which the first one is concerned
with the finite-time ruin probability with UTAI, non-identically distributed
claim sizes and a general claim-arrival process.

Theorem 1.1. Consider the risk model (1.1) with r ≥ 0, in which the claim

sizes {Xi, i ≥ 1} are UTAI r.v.s with distributions Fi, i ≥ 1, respectively, and
for any fixed 0 < T < ∞ such that EN(T ) > 0, the general claim-arrival

process {N(t), t ≥ 0} satisfies E(N(T ))p+1 < ∞ for some p > J+
F . Assume

that there are a sequence of positive numbers {li, i ≥ 1} and a distribution

F ∈ L ∩ D such that F i(x) ∼ liF (x) holds for each i ≥ 1 and

(1.7) 0 < l = inf
n≥1

1

n

n
∑

i=1

li ≤ sup
n≥1

1

n

n
∑

i=1

li = l <∞.

Then for the fixed 0 < T <∞,

(1.8) l

∫ T

0

F (xert)dEN(t) . ψr(x, T ) . l

∫ T

0

F (xert)dEN(t),

if the premium process {C(t), t ≥ 0} is independent of the other sources of

randomness. Further, if Fi ≡ F, i ≥ 1, then for the fixed 0 < T <∞,

(1.9) ψr(x, T ) ∼

∫ T

0

F (xert)dEN(t).
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Obviously, from relation Fi(x) ∼ liF (x), i ≥ 1, and F ∈ L ∩ D, it follows
that Fi ∈ L ∩ D and J±

Fi
= J±

F , i ≥ 1. Compared to Theorem 1.1, the second

main result discusses the case that {C(t), t ≥ 0} is not necessarily independent
of the other sources of randomness.

Theorem 1.2. Let F ∈ C and the other conditions of Theorem 1.1 be true.

Then relation (1.8) still holds for any fixed 0 < T <∞, if the discounted value

of premiums accumulated up to time T , define in (1.2), satisfies

(1.10) P ( ˜C(T ) > x) = o(1)F (x).

Further, if Fi ≡ F , i ≥ 1, then (1.9) holds for the fixed 0 < T <∞.

Applying Theorems 1.1 and 1.2, we now present a corollary for a special case
when r = 0.

Corollary 1.1. For the risk model (1.1) with r = 0, if the conditions of The-

orem 1.1 (or Theorem 1.2) are true, then for any fixed 0 < T < ∞ and any

α > 0,
l F (x)EN(T ) . ψ0(x, T ) . l F (x)EN(T ),

and

α−1l

∫ x+αEN(T )

x

F (y)dy . ψ0(x, T ) . α−1l

∫ x+αEN(T )

x

F (y)dy.

If Fi ≡ F, i ≥ 1, then

ψ0(x, T ) ∼ F (x)EN(T ) ∼ α−1

∫ x+αEN(T )

x

F (y)dy.

In the third main result, we extend the set for T from (0,∞) to an infinite
set (0,∞].

Theorem 1.3. Under the conditions of Theorem 1.2 with r > 0, we further

assume that the claim sizes {Xi, i ≥ 1} are identically distributed by F with

J−

F > 0, and the claim inter-arrival times {θi, i ≥ 1} are WLOD such that for

every ǫ > 0,

(1.11) lim
n→∞

gL(n)e
−ǫn = 0,

and the total discounted amount of premiums is finite, namely,

0 ≤ ˜C =

∫

∞

0

e−rsdC(s) <∞ a.s..

Then relation (1.9) holds for all 0 < T ≤ ∞, if one of the following conditions

is true:
1. the premium process {C(t), t ≥ 0} is independent of the other sources of

randomness;
2. the total discounted amount of premiums satisfies

(1.12) P ( ˜C > x) = o(1)F (x).
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Remark 1.1. The main results above show that the dependence structures of
the claim sizes and their inter-arrival times, and the perturbed term generated
by a diffusion process {B(t), t ≥ 0} do not influence the asymptotic behaviors
of the finite-time and infinite-time ruin probabilities.

The remaining part of this paper is divided into two parts: Section 2 states
some lemmas and Section 3 proves the main results.

2. Some lemmas

In this section, we present some lemmas that are helpful to prove the main
results. The first lemma is a direct consequence of Proposition 2.2.1 of Bingham
et al. [1] and Lemma 3.5 of Tang and Tsitsiashvili [20].

Lemma 2.1. If a distribution F ∈ D with J−

F > 0, then

(1) for any 0 < p̂ < J−

F ≤ J+
F < p <∞, there exist positive constants C > 1

and D > 0 such that

(2.1) C−1(x/y)p̂ ≤
F (y)

F (x)
≤ C(x/y)p for all x ≥ y ≥ D;

(2) for any p > J+
F , it holds that x−p = o(1)F (x).

The second lemma is a combination of Theorem 3.3(iv) of Cline and Samoro-
dnitsky [6] and Lemma 2.5 of Wang et al. [24].

Lemma 2.2. Let X be a r.v. with distribution F , and Y be a nonnegative r.v.

independent of X and such that EY p <∞ for some p > J+
F .

(1) If F ∈ D, then P (XY > x) ≍ F (x).
(2) If F ∈ C, then the distribution of XY still belongs to the class C.

The third lemma is a restatement of Lemma 3.3 of Gao and Liu [9]. Also,
see Lemma 3.1(i) of Chen et al. [2] or Theorem 2.1 of Li [13]. It should be
mentioned that the asymptotic formula in the lemma was first developed by
Tang and Tsitsiashvili [21].

Lemma 2.3. Let {Xi, 1 ≤ i ≤ n} be n TAI and real-valued r.v.s with distribu-

tions Fi ∈ L ∩ D, 1 ≤ i ≤ n, respectively. Then for any fixed 0 < a ≤ b <∞,

P

(

n
∑

i=1

ciXi > x

)

∼
n
∑

i=1

P (ciXi > x)

holds uniformly for all (c1, c2, . . . , cn) ∈ [a, b]n.

The lemma below comes from and can extend Lemma 3.5 of Wang [23].

Lemma 2.4. In the risk model (1.1) with a general claim-arrival process sat-

isfying EN(T ) > 0 for any fixed 0 < T <∞, if the claim sizes {Xi, i ≥ 1} are
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non-identically distributed by Fi, i ≥ 1, respectively, such that Fi(x) ∼ liF (x),
i ≥ 1, and (1.7) hold, then

l

∫ T

0

F (xert)dEN(t) .

∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x)

. l

∫ T

0

F (xert)dEN(t).(2.2)

Further, if {Xi, i ≥ 1} are identically distributed by F , then

(2.3)

∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x) =

∫ T

0

F (xert)dEN(t).

Proof. Clearly, relation (2.3) is from Lemma 3.5 of Wang [23]. As for (2.2),
it can be given by copying the proof of Lemma 3.5 of Wang [23] with some
obvious modifications. �

The following lemma is due to Lemma 3.3 of Gao et al. [8].

Lemma 2.5. Consider the counting process {N(t), t ≥ 0} defined by (1.5) with
WLOD inter-arrival times {θi, i ≥ 1} such that (1.11) holds for every ǫ > 0.
Then for any fixed T > 0 and any p > 0,

E(N(T ))p <∞.

Finally, we present Lemma 3.5 of Jiang and Yan [12], which is due to Lemma
4.5 of Tang [17].

Lemma 2.6. Let X1 and X2 be two independent r.v.s with distributions F1

and F2, respectively. If F1 ∈ S and F 2(x) = o(1)F 1(x), then P (X1 + X2 >
x) ∼ F 1(x).

3. Proofs of main results

Proof of Theorem 1.1. From (1.1) and (1.3), the finite-time ruin probability
satisfies

(3.1) ψr(x, T ) = P (Sr(t)− σIt > x+ ˜C(t) for some 0 < t ≤ T ),

where Sr(t) =
∑N(t)

i=1 Xie
−rτi , It =

∫ t

0 e
−rsdB(s), and ˜C(t) is that in (1.2).

Set YT = σ supt∈[0,T ] |It|, 0 < T ≤ ∞. It is well-known that the stochastic
integral It, 0 < t ≤ ∞, follows a normal distribution with mean 0 and variance
∫ t

0
e−2rsds. So by many classic martingale inequalities, YT , 0 < T ≤ ∞, has

finite moments of arbitrary orders, and then

(3.2) P (YT > x) = o(1)F (x), 0 < T ≤ ∞.

Hence from (3.1), it follows that for any fixed 0 < T <∞,

(3.3) P (Sr(T )− YT > x+ ˜C(T )) ≤ ψr(x, T ) ≤ P (Sr(T ) + YT > x).
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Note that for any fixed 0 < T < ∞ satisfying EN(T ) > 0, it holds that
E(N(T ))p+1 < ∞ for some p > J+

F , thus for any given ε > 0, there exists a
positive integer m0 = m0(ε, T ) > 1 such that

(3.4) E(N(T ))p+11
{N(T )>m0}

≤ ε.

Firstly, we deal with P (Sr(T ) > x). Let m0 be fixed as above, we get

P (Sr(T ) > x) =

(

m0
∑

n=1

+

∞
∑

n=m0+1

)

P

(

n
∑

i=1

Xie
−rτi > x,N(T ) = n

)

= H1 +H2.(3.5)

For H1, by Lemma 2.3 and the independence between {Xi, i ≥ 1} and {N(t),
t ≥ 0}, we have

H1 =

m0
∑

n=1

∫

{0<t1≤t2≤···≤tn≤T, tn+1>T}

P

(

n
∑

i=1

Xie
−rti > x

)

dG(t1, t2, . . . , tn+1)

∼
m0
∑

n=1

n
∑

i=1

P (Xie
−rτi > x,N(T ) = n)

≤
∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x),(3.6)

where G(t1, t2, . . . , tn+1) is the joint distribution of (τ1, τ2, . . . , τn+1), 1 ≤ n ≤
m0. For H2, it holds

H2 ≤





∑

m0<n<x/D

+
∑

n≥x/D



P

(

n
∑

i=1

Xi > x

)

P (N(T ) = n)

= H21 +H22,(3.7)

where D is the constant in (2.1) such that m0 < x/D. Then, we combine (2.1),
(1.7) and (3.4) to obtain that

H21 ≤
∑

m0<n<x/D

n
∑

i=1

F i

(x

n

)

P (N(T ) = n)

. CF (x)
∑

m0<n<x/D

(

1

n

n
∑

i=1

li

)

np+1P (N(T ) = n)

≤ Cl F (x)E(N(T ))p+11
{N(T )>m0}

≤ ClεF (x).(3.8)

By Markov’s inequality, Lemma 2.1(2) and (3.4), there exists an x1 = x1(ε)
such that for all x ≥ x1,

H22 ≤ P (N(T ) ≥ x/D) ≤ (x/D)−(p+1)E(N(T ))p+11
{N(T )>x/D}

≤ εF (x)E(N(T ))p+11
{N(T )>m0}

≤ ε2F (x).(3.9)
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Substituting (3.8) and (3.9) into (3.7) and considering the arbitrariness of ε > 0
can imply that for any fixed 0 < T <∞,

(3.10) H2 = o(1)F (x) = o(1)P (X1e
−rτ11

{τ1≤T}
> x),

where the second step is due to F 1(x) ∼ l1F (x) and Lemma 2.2(1). So from
(3.5), (3.6) and (3.10), we arrive at

(3.11) P (Sr(T ) > x) .

∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x).

On the other hand, we derive by the derivation of H1 that

P (Sr(T ) > x) ≥ H1 ∼

(

∞
∑

n=1

−
∞
∑

n=m0+1

)

n
∑

i=1

P (Xie
−rτi > x,N(T ) = n)

=

∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x)−H3,(3.12)

where m0 is the same as that in (3.4). For H3, similarly to (3.8), it follows that

H3 . F (x)

∞
∑

n=m0+1

(

1

n

n
∑

i=1

li

)

nP (N(T ) = n) ≤ lεF (x),

Thus by the similar derivation of (3.10), we also get that for any fixed 0 < T <
∞,

H3 = o(1)F (x) = o(1)P (X1e
−rτ11

{τ1≤T}
> x),

which, along with (3.12), yields that

(3.13) P (Sr(T ) > x) &

∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x).

Consequently, from (3.11), (3.13) and Lemma 2.4, we show that

l

∫ T

0

F (xert)dEN(t) . P (Sr(T ) > x)

∼
∞
∑

i=1

P (Xie
−rτi1

{τi≤T}
> x) . l

∫ T

0

F (xert)dEN(t).(3.14)

Now we turn to estimate ψr(x, T ). Clearly, a combination of the right-hand
side inequality in (3.3), (3.2), (3.14), Lemma 2.6 and the independence between
YT and Sr(T ), can prove that

(3.15) ψr(x, T ) . l

∫ T

0

F (xert) dEN(t).

By (3.14), we find that the distribution of Sr(T ) is long-tailed. Then by the
dominated convergence theorem and the independence between {C(t), t ≥ 0}
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and the other sources of randomness, we know that
(3.16)

lim
x→∞

P (Sr(T )− ˜YT > x)

P (Sr(T ) > x)
=

∫

∞

0

lim
x→∞

P (Sr(T ) > x+ y)

P (Sr(T ) > x)
P (˜YT ∈ dy) = 1,

where ˜YT = YT + ˜C(T ). By the left-hand side inequality in (3.3), (3.14) and
(3.16), it follows that

(3.17) ψr(x, T ) & l

∫ T

0

F (xert)dEN(t).

So by (3.15) and (3.17), relation (1.8) holds for the fixed 0 < T <∞.
If Fi ≡ F, i ≥ 1, then l = l = 1, and relation (1.9) follows from (1.8)

immediately. �

Proof of Theorem 1.2. According to the proof of Theorem 1.1, we only need to
estimate the asymptotic lower-bound of ψr(x, T ). The condition F ∈ C ensures
that for any given ε > 0, there exist a u0 > 0 and an x2 = x2(ε) such that for
all x ≥ x2,

(3.18) F ((1 + u0)x) ≥ (1− ε)F (x).

By the left-hand side inequality in (3.3), we see that for u0 > 0 as above,

ψr(x, T ) ≥ P (Sr(T )− YT > (1 + u0)x)− P ( ˜C(T ) > u0x) = H4 −H5.(3.19)

For H4, by (3.14) and the similar derivation to (3.16), we have that for all large
x ≥ x2,

H4 & l

∫ T

0

F ((1 + u0)xe
rt)dEN(t) ≥ (1− ε) l

∫ T

0

F (xert)dEN(t),(3.20)

where the second step is due to (3.18). For H5, by (1.10) and F ∈ L ∩D ⊂ D,
we get

H5 = o(1)F (u0x) = o(1)F (x).

This, along with (2.1), yields that there exists an x3 = x3(ε) such that for all
x ≥ max{x3, D},

(3.21) H5 ≤ εF (x) ≤
C0ε

l
· l

∫ T

0

F (xert)dEN(t),

where C0 = CerTp

EN(T ) . Hence, substituting (3.20) and (3.21) into (3.19) and using

the arbitrariness of ε > 0 can prove that relation (3.17) still holds under the
conditions of Theorem 1.2. �

Proof of Theorem 1.3. For the case when 0 < T < ∞, we know from Lemma
2.5 that Theorem 1.3 is a special case of Theorems 1.1 and 1.2. Hence, it
suffices to deal with the case of T = ∞. By (1.1) and (1.4), we have

ψr(x,∞) = P

(

∞
∑

i=1

Xie
−rτi1

{τi≤t} − σIt > x+ ˜C(t) for some 0 < t <∞

)

,
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where ˜C(t) and It are the same as those in (1.2) and (3.1), respectively. Hence,

P

(

∞
∑

i=1

Xie
−rτi − Y∞ > x+ ˜C

)

≤ ψr(x,∞) ≤ P

(

∞
∑

i=1

Xie
−rτi + Y∞ > x

)

,

(3.22)

where ˜C and Y∞ are those in (1.12) and (3.2) with T = ∞.
Firstly, we estimate the asymptotic upper-bound of ψr(x,∞). Following the

proof of Lemma 3.5 of Gao and Liu [9], there exists a positive integer n0 such
that for any 0 < v < 1,

(3.23) P

(

∞
∑

i=n0+1

Xie
−rτi >

vx

2

)

= o(1)P (X1e
−rτ1 > x).

Note that F ∈ C, then by Lemma 2.2(2), the distributions of Xie
−rτi, i ≥ 1,

all belong to the class C. So for any given ε > 0, there exist a v0, 0 < v0 < 1,
and an x4 = x4(ε) > 0 such that for all x ≥ x4,

(3.24)

n0
∑

i=1

P
(

Xie
−rτi > (1 − v0)x

)

≤ (1 + ε)

n0
∑

i=1

P
(

Xie
−rτi > x

)

.

Let n0 and v0 be fixed as above. By the right-hand side inequality in (3.22), it
holds that

ψr(x,∞) ≤ P

(

n0
∑

i=1

Xie
−rτi > (1− v0)x

)

+ P

(

∞
∑

i=n0+1

Xie
−rτi >

v0x

2

)

+ P
(

Y∞ >
v0x

2

)

= H6 +H7 +H8.(3.25)

For H6, by Theorem 1 of Chen et al. [5] and (3.24), we derive that for all large
x ≥ x4,

H6 ∼
n0
∑

i=1

P
(

Xie
−rτi > (1− v0)x

)

≤ (1 + ε)

n0
∑

i=1

P
(

Xie
−rτi > x

)

.

For H7, by (3.23) with v replaced by v0, we get

H7 = o(1)P (X1e
−rτ1 > x).

For H8, by (3.2) with T = ∞, F ∈ L ∩ D ⊂ D and Lemma 2.2(1), we obtain

H8 = o(1)P (X1e
−rτ1 > x).

Therefore, substituting the derivations of Hi, i = 6, 7, 8, into (3.25) and con-
sidering the arbitrariness of ε > 0, it follows that

(3.26) ψr(x,∞) .

∞
∑

i=1

P
(

Xie
−rτi > x

)

=

∫

∞

0

F (xert)dEN(t).
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Subsequently, we estimate the asymptotic lower-bound of ψr(x,∞). By
(2.1), we see that for all x ≥ D and any 0 < T <∞,

∫

∞

T
F (xert)dEN(t)

∫

∞

0
F (xert)dEN(t)

=

∫

∞

T
F (xert)/F (x)dEN(t)

∫

∞

0
F (xert)/F (x)dEN(t)

≤ C2

∫

∞

T
e−rp̂tdEN(t)

∫

∞

0 e−rptdEN(t)
.(3.27)

Clearly, by (1.6), it holds that
∫

∞

0

e−rptdEN(t) =

∞
∑

n=1

∫

∞

0

e−rptdP (τn ≤ t)

=
∞
∑

n=1

E(e−rpτn) ≤
∞
∑

n=1

gL(n)(Ee
−rpθ1)n.

For (1.11), take ǫ = − log(Ee−rpτ1) − c for some c > 0, then there exists a
positive integer n1 such that for all n ≥ n1,

gL(n) ≤ e−cn exp{−n log(Ee−rpθ1)}.

Thus, we have
∫

∞

0

e−rptdEN(t) ≤
n1−1
∑

n=1

gL(n)
(

Ee−rpθ1
)n

+

∞
∑

n=n1

e−cn <∞.

Similarly, we also have
∫

∞

0

e−rp̂tdEN(t) <∞.

Hence, the third item of (3.27) tends to 0 as T → ∞, which yields that for the
given ε > 0, there exists some T0, 0 < T0 <∞, such that for all x ≥ D,

(3.28)

∫

∞

T0

F (xert)dEN(t) ≤ ε

∫

∞

0

F (xert)dEN(t).

Under condition 1 of Theorem 1.3, by the left-hand side inequality in (3.22),
the similar argument of (3.16), and (3.14) with T replaced by T0, we show that
for all x ≥ D,

ψr(x,∞) ≥ P (Sr(T0)− Y∞ > x+ ˜C) &

∫ T0

0

F (xert)dEN(t)

=

(
∫

∞

0

−

∫

∞

T0

)

F (xert)dEN(t) ≥ (1− ε)

∫

∞

0

F (xert)dEN(t),(3.29)

where the last step is due to (3.28). Therefore, by (3.26), (3.29) and the
arbitrariness of ε > 0, we obtain that relation (1.9) holds for T = ∞ under
condition 1 of this theorem. Under condition 2 of Theorem 1.3, again by the
left-hand side inequality in (3.22), one has

(3.30) ψr(x,∞) ≥ P (Sr(T0)− Y∞ > (1 + u0)x)− P ( ˜C > u0x) = H9 −H10,
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where u0 > 0 and 0 < T0 <∞ are those in (3.18) and (3.28), respectively. For
H9, by the similar derivation of (3.20), we prove that for all x ≥ max{x2, D},

H9 ≥ (1− ε)

∫ T0

0

F (xert)dEN(t)

= (1− ε)

(
∫

∞

0

−

∫

∞

T0

)

F (xert)dEN(t)

≥ (1− ε)2
∫

∞

0

F (xert)dEN(t),(3.31)

where the last step is due to (3.28). ForH10, by (1.12) and the similar derivation
of (3.21), there exists an x5 = x5(ε) such that for all x ≥ max{x5, D},

H10 ≤ εF (x) ≤ C0ε

∫

∞

0

F (xert)dEN(t),(3.32)

where C0 is the same as that in (3.21). Consequently, by (3.26), (3.30)-(3.32)
and the arbitrariness of ε > 0, we arrive at relation (1.9) for T = ∞ under
condition 2 of the theorem, and hence the proof is completed. �
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