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A NOTE ON THE SEVERITY OF RUIN
IN THE RENEWAL MODEL WITH
CLAIMS OF DOMINATED VARIATION

QIHE TANG

ABSTRACT. This paper investigates the tail asymptotic behavior of
the severity of ruin (the deficit at ruin) in the renewal model. Under
the assumption that the tail probability of the claimsize is dominat-
edly varying, a uniform asymptotic formula for the tail probability
of the deficit at ruin is obtained.

1. Model and main result

Throughout this paper, for any 0 < a < b < 0o the integral symbol
f: is understood as f(a,b] but f;o = f(a, 00) * For a given distribution
function (d.f.) F with finite mean p and support [0, 00), we denote its
tail by F(z) =1 — F(z) and its equilibrium d.f. by

(1.1) Fulz) = l/zf(t)dt, 5> 0.
0

The symbol F*" represents the n-fold convolution of F with F*C being
degenerate at 0.

The following renewal risk model has received extensive attention
in risk theory; see Embrechts et al.[2], Rolski et al. [9] and Asmussen
[1] for reviews. In this model the successive claims, Zy,k > 1, form
a sequence of independent, identically distributed (i.i.d.) and non-
negative random variables (r.v.’s) with common d.f. F' and finite mean
. Their occurrence times, o, k > 1, comprise a renewal process N(t) =
#{k > l;0p € (0,t]}, t > 0, i.e. that the inter-occurrence times
0 = 01,0, = 0, — 0r_1,k > 2, are i.i.d. non-negative r.v.’s. Suppose
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that the sequences {0,k > 1} and {Z,k > 1} are mutually indepen-
dent. Let ¢ > 0 be the gross premium rate. The loss process is then
defined by

N(t)
(1.2) S(t)=> Zr—c, t>0,
k=1

where 2221 Z, = 0 by convention. Denote by Z and 6 a the generic
r.v.’s of {Zg,k > 1} and {0,k > 1} respectively. We assume that both
Z and 6 are not degenerate at 0. Throughout, the relative safety loading
condition holds:

EO —
=—-—C u>
M

Let u > 0 be the initial surplus of the insurance company. Then, the
ruin time of the risk process (1.2) is T, = inf{t : S(¢) > u} and the
deficit at ruin is A, = S(T,) — u. Here we define inf ¢ = oo as usual.

In risk theory one particularly interesting problem is to determine
the distribution of A,. Related work can be found in Gerber et al.
[6], Picard (8], Schmidli [10], Willmot and Lin [13], among others. The
cited references, however, only dealt with the problem in the compound
Poisson model, i.e. the counting process N(t) is a homogenous Poisson
process.

In this short communication we first establish an asymptotic rela-
tionship for the tail probability of the deficit A,. Since the quantity A,
can not be defined provided that the ruin does not occur (i.e. T, = 00),
we have to consider the tail probability of A, accompanied by the event
(Tw < o0). In order to state our result, we need the notation below.
Let F be a d.f. supported on [0,00). We say that F' has a dominated
variation, denoted by F € D, if and only if

F(zy)

lim sup = < 00
T—00 (fl))

(1.3) 0.

for any 0 < y < 1 (or equivalently, for y = 1/2).

THEOREM 1.1. In the renewal model with the relative safety load-
ing condition (1.3), if the claimsize distribution F' € D, then we have,
uniformly for = > 0,

(1.4) P(A, > z,T, < 0) ~ p  Fy(u + z) as u — 00.
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REMARK. The uniformity of the asymptotic relation (1.4) is under-
stood as
) P(Ay > z,T, < )
lim sup —
u—o0g50|  piF(u+ )
which is crucial for our purpose. For example, it allows us to use
(1.4) in deriving asymptotic relationships for the moments of the deficit
Aull(1, <o0) 88 u — 0o0. Further related studies can be found in Cheng et
al. [2].

—1|=0,

2. Preliminaries

Heavy-tailedness properties are often considered when one aims to
establish some tail asymptotic relationships in extremal value theory; see
Embrechts et al. [3] for a thorough review. Besides the class D, another
very important class of heavy-tailed distributions is the subexponential
class, denoted by S. By definition, a d.f. F' supported on [0, 0c) belongs
to § if and only if

lim F_*n(w) =n
z—oo F (a;)
for any n > 2 (or equivalently, for some n > 2). It is well-known that if
F € D with a finite mean then F, € S; see Embrechts and Omey [5].
In the sequel we will need the following closure property of the class

S:

LEMMA 2.1 (Lemma A3.28 in Embrechts et al. [3]). Let Fy and F;
be two d.f.’s supported on [0,00). If there is some d.f. F € S and some
numbers ¢; > 0 such that lim,_o, Fy(z)/F(x) = ¢; for i = 1,2, then
limx_,oo F1 * Fz(:c)/F(x) =c; + cso.

Best to our knowledge, the following result about the class D is new
in the literature; closely related discussions can be found in Tang [11].

LEMMA 2.2. Let F be a d.f. with support [0,00) and finite mean, if
F €D then

(2.1) lim lim sup 22 _ 1.

¥/l z—o0 Fe(x)

Proof. For 0 < y < 1 arbitrarily fixed, we have that

Fzy) ., JpF(t)dt
R@ T CFoW@
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and that

o< Jn EO _Fay( -y _ Flay -y
T [OFMdt T [*Fydt - F(2z)

(
Since F € D implies that F(zy)/F(2z) is uniformly bounded, it follows
that

hm limsup —=—=— =0.

T—00

Hence (2.1) holds. O

[ F(t)dt
[ F(t)dt

Following Kalashnikov [7], now we introduce some important charac-
teristics of the risk process (1.2):

(i) the ladder epochs: m = inf{¢t : S(t) > 0}, m, = inf{t : S(¢) >
S(mn1)}, n > 2

(ii) the ladder heights: L = Ly = S(m1), L, = S(m,) — S(mn-1),
n > 2.
For notational convenience we define mg = Ly = 0. As an important
complementary situation, we define m, = L, = oo in case the ladder
epoch m,_1 is well-defined but the set {t : S(t) > S(m,-1)} is empty.
Clearly, the conditional random variables

L, |(mp—1 < 00), n>1,

comprise an i.i.d. sequence. Write H as the d.f. of the ladder L. Of
course, H is supported on (0,00). We remark that, under the safety
loading condition (1.3), H is a defective d.f. with a deficit

(2.2) g=1-P(L < 0) > 0;

see Veraverbeke [12] (pp. 28-31). In addition, Veraverbeke [12] (Theo-
rem 1(C)) indicates that:

LEMMA 2.3. In the renewal model with the relative safety loading
condition (1.3), if the claimsize distribution F' € D, then

(2.3) H(z)=1-q— H(z) ~ p~qFe(x) as x — 0.

It is well-known that the ruin probability of the risk process (1.2),
defined by ¥(u) = P(Ty, < o), can be reduced to the following series:

(2.4) W(u) = gy H(u);
n=1
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see Kalashnikov [7]. We introduce an auxiliary function that
(2.5) R(u) =1—4(u) =q )  H™(u).
n=0

From (2.2) we see that R is a standard distribution on [0, 00) with
R{0} = q. Embrechts and Veraverbeke [4] obtained that:

LEMMA 2.4. In the renewal model with the safety loading condition
(1.3), if the claimsize distribution F' € D, then

(2.6) PY(u) ~ p 1 Fp(u) as u — 00.

3. Proof of the main result

First of all, we establish a general expression for the tail probability
of the deficit A,.

LEMMA 3.1. In the renewal model with the relative safety loading
condition (1.3), we have, for any x > 0 and any u > 0,

1 —
(3.1) P(A, > 2,T, < o0) = p H(u+ z —t)R(dt).
[0,u]

Proof. We write 7, = inf {n : m, = T, }, which denotes the number
of the ladders before ruin. Note that the ruin, if occurs, should be at
the point of some ladder epoch. Therefore {T}, < 00} = {7, < o0} and

Auzzu:Lk—u.
k=1

From this and (2.5) we have
P(Ay, >z, Ty < )

[o 0] n
= ZP(ZLk—u>m,Tu=n)
n=1 k=1

oo n n—1
= ZP<w>2Lk>u+x,ZLk§u>
n=1 k=1 k=1
o] w n—1
= Z/ P(oo>Ln>u+x—t)P<ZLkedt>
n=1"0 k=1
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= F(u—l—w)+i/0uﬁ(u+$—t)H*(n_l) (dt)

= Y Bu+o-ora.
0.4

This ends the proof of Lemma 3.1. O
Now we are ready to prove Theorem 1.1.
Proof. From (3.1) we have
P(A, > z,T, < 00)

= (/{o v / ) (u+z —t)R(dt)

(3.2) = q(H*R(u+ z)— (1 —q)v(u+z)

U+
_/' H(u+ - )R(dr))
_ ah—b—hy

By virtue of Lemma 2.1, simple combination of (2.3) and (2.6) yields
that

h~Hu+z)+(1-uu+z)~p tgFe(u+tz)+ L.

Now we deal with I3. For any 0 < y < 1, we subdivide I3 into two parts
as

y(u+z) utz
I3 = / H(u+z —t)R(dt) + / H(u+ z — t)R(dt)
u y(utz)

< H(A-y)(u+2) () + (1 —q) (y(u+z) —u+x))
= I3 + (1 — q)I32.

Recalling (2.3) and the condition F € D, we see that, for arbitrarily
fixed 0 <y < 1,

H((1-y)(w) H (1 -y)(w)

1< inf ——"———= <sup ————"—"= < 0.
T u20 Fe(u) B uZ% Fe(u)
It follows that, for arbitrarily fixed 0 < y < 1,
I
lim sup sup 3 _—0

u—oo z>0 Fe (U + .Z’)
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As for I3s, from (2.6) and by virtue of Lemma 2.2, we obtain

lim lim sup sup T = lim lim sup sup w —
¥/l u—oo >0 "/)(U -f—ZL‘) ¥/l u—oo z>0 1/J(u+x)
= lim lim sup F_’e_(yu) -
¥/l u—oo Fe(u)
= 0.
Hence I3 = o (Fe(u + z)) uniformly for > 0. Finally, substituting I
and I3 into (3.2) we complete the proof of (1.4). O
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