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LARGE DEVIATIONS FOR A SUPER-HEAVY TAILED

β-MIXING SEQUENCE

Yu Miao and Qing Yin

Abstract. Let {X,Xn;n ≥ 1} be a β-mixing sequence of identical non-
negative random variables with super-heavy tailed distributions and Sn =

X1 + X2 + · · · + Xn. For ε > 0, b > 1 and appropriate values of x, we

obtain the logarithmic asymptotics behaviors for the tail probabilities

P(Sn > eεn
x
) and P(Sn > eεb

n
). Moreover, our results are applied to

the log-Pareto distribution and the distribution for the super-Petersburg

game.

1. Introduction

We are concerned with large deviations for a super-heavy tailed β-mixing
sequence. Our approach is based on techniques of transforming dependent
sequence to independent sequence and partitioning (see Berbee [2] and Liu and
Hu [13]). Nakata [20] studied that large deviations for sums of independent and
identically distributed random variables with non-negative super-heavy tailed
distributions. We extend the results in Nakata [20] to β-mixing sequence.

1.1. Heavy-tailed random variables

Hu and Nyrhinen [10] introduced the following two parameters for non-
negative random variable X, namely,

α∗ = − lim sup
t→∞

1

t
logP (logX > t) ∈ [0,∞]

and

α∗ = − lim inf
t→∞

1

t
logP (logX > t) ∈ [0,∞].

Clearly, α∗ ≤ α∗. The parameters are finite and equal with the common value
α if and only if for every ε > 0 and large t,

(1.1)
1

tα+ε
≤ P(X > t) ≤ 1

tα−ε
.
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We may have α∗ < α∗. To see this, let P(logX = en) = C exp(−en) for
n = 1, 2, . . ., where C is a constant such that

∑∞
n=1 C exp(−en) = 1. For this

random variable, we have α∗ = 1 and α∗ = e. A further useful fact is that

α∗ = sup{m ≥ 0;E(Xm) < ∞}.

The proof can be found in Rolski et al. [21, p. 39]. If α∗ < ∞, then X is heavy
tailed, namely, EemX = ∞ for every m > 0.

Hu and Nyrhinen [10] established the large deviations for the partial sums
of non-negative independent and identically distributed random variables with
heavy tails, which answered the conjecture in Gantert [8]. Miao et al. [17]
showed the logarithmic asymptotic behaviors for the cases of m-dependent
sequence and negatively associated sequences. Miao et al. [16] studied the
logarithmic asymptotic behaviors for the largest order statistics from a Pareto
distribution. Stoica [23] obtained the large deviations for the player’s gains in
the independent St. Petersburg games. Li and Miao [11] established the large
deviations for the partial sums of independent identically distributed B-valued
random variables. Miao and Li [15] further extended the works in Li and Miao
[11].

1.2. Super-heavy tailed random variables

If α = 0 then it seems that (1.1) is not so effective. Therefore, Nakata [20]
tried to introduce parameters η∗ and η∗ as follows:

(1.2) η∗ = − lim sup
t→∞

1

t
logP (log logX > t) ∈ [0,∞]

and

(1.3) η∗ = − lim inf
t→∞

1

t
logP (log logX > t) ∈ [0,∞].

If the parameters are finite and equal with the common value η, then for each
ε > 0 and large x, we get

1

(log x)η+ε
≤ P(X > x) ≤ 1

(log x)η−ε
,

whose tail is super-heavy. The terminology “super-heavy” is used in Falk et al.
[6]. A further useful fact is that

η∗ = sup{d ≥ 0;E((logX)d) < ∞}.

The proof is used by the same method as Rolski et al. [21, p. 39].
Nakata [20] studied the following large deviations for sums of independent

and identically distributed random variables {X,Xn;n ≥ 1} with super-heavy
tailed distributions.

Theorem 1.1. Assume that 0 < η∗ < ∞. Then for any ε > 0, the following
statements hold.
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(i) We have

lim sup
n→∞

logP
(
Sn > eεn

x)
log n

= 1− η∗x, for x > max{1, 1/η∗}.

In addition, if η∗ < ∞ then

lim inf
n→∞

logP
(
Sn > eεn

x)
log n

= 1− η∗x, for x > max{1, 1/η∗}.

(ii) We have

lim sup
n→∞

logP
(
Sn > eεb

n)
n

= −η∗ log b, for b > 1.

In addition, if η∗ < ∞ then

lim inf
n→∞

logP
(
Sn > eεb

n)
n

= −η∗ log b, for b > 1.

Li et al. [12] obtained a general large deviation result for the tail probabilities
P(∥Sn∥ > sg(n)) for all s > 0 by giving the exact values for

lim
n→∞

logP(∥Sn∥ > sg(n))

log n
and lim

n→∞

logP(∥Sn∥ > sg(n))

h(n)
,

where {X,Xn;n ≥ 1} is a sequence of independent and identically distributed
B-valued random variables. In their paper, (B, ∥ · ∥) is a real separable Banach
space equipped with its Borel σ-algebra, i.e., the σ-algebra generated by the
class of open subsets of B determined by ∥ · ∥. g(n) is a continuous and strictly
increasing function and h(n) is an increasing regularly varying function.

1.3. β-mixing sequence

Let us recall the definition of the β-mixing coefficient, and for the definitions
of other mixing coefficients as well as for the relations between them, we refer to
Bradley [3]. Let X and Z be two random variables, and denote the distribution
of (X,Z) by µ(X,Z) and the distributions of X and Z by µX and µZ . The β-
mixing coefficient of X and Z is defined as

β(X,Z) =
1

2
∥µ(X,Z) − µX ⊗ µZ∥,

where ∥µ− ν∥ denotes the (total) variation norm of the signed measure µ− ν.
Now for a sequence of random variables {Yn;n ≥ 1}, define

β(n) = sup
k∈N

β((Y1, Y2, . . . , Yk), (Yk+n, Yk+n+1, . . .)).

The sequence is called β-mixing (or absolutely regular) if β(n) → 0 for n → ∞.
In time series, asymptotic independent conditions such as mixing conditions

are usually proposed to replace independent case, among which β-mixing is
an important dependent structure and has been connected with a large class
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of time series including autoregressive moving average (ARMA) models, gen-
eralized autoregressive conditional heteroskedasticity (GARCH) models and
certain Markov processes.

Masuda [14] considered a multidimensional diffusion with jumps and pro-
vided sets of conditions under which the multidimensional diffusion is expo-
nentially β-mixing (i.e., β(n) = O(e−γn) for some γ > 0) and fulfils the er-
godic theorem for any initial distribution. Specially, Masuda [14] proved that a
special Lévy-driven Ornstein-Uhlenbeck processes is (exponentially) β-mixing
based on the super-heavy tailed condition. Let Q ∈ Rd

⊗
d whose eigenvalues

have positive real parts, and let Z be a nontrivial d-dimensional Lévy process.
Then let X be a d-dimensional Ornstein-Uhlenbeck process given by

(1.4) dXt = −QXtdt+ dZt

with L(X0) = η. We beforehand know that a unique invariant distribution
π exists if and only if

∫
|z|>1

log |z|ν(dz) < ∞, where ν is a Lévy measure.

Masuda [14] showed the following results: Let X be the Ornstein-Uhlenbeck
process given by (1.4), then:

(i) If
∫
|z|>1

log |z|ν(dz) < ∞, then X fulfils the ergodic theorem for any η

and is β-mixing for η = π;
(ii) If

∫
|z|>1

|z|qν(dz) < ∞ and
∫
|x|qη(dz) < ∞ for some q > 0, then X is

exponentially β-mixing and
∫
|x|qπ(dz) < ∞.

Athreya and Pantula [1] considered an autoregressive process given by Yn =
ρYn−1 + εn, n = 1, 2, . . ., where |ρ| < 1 and {εn} are i.i.d. random variables
independent of Y0. Assume that there exists a finite constant C such that
|ε1| ≤ C and

E(log+ |ε1|) < ∞.

In addition, for some n0 ≥ 1, Un0
=
∑n0

j=1 ρ
jεj has a non-trivial absolutely

continuous component, then for any initial distribution of Y0 concentrated on
a bounded set, {Yn} is β-mixing (in fact, {Yn} is uniform mixing).

Liu and Hu [13] studied the logarithmic asymptotics for a stationary se-
quence of non-negative β-mixing random variables with heavy tails. The novel
work of Chen et al. [4] made the first attempt to develop the theory of Cramér-
type moderate deviations for self-normalized sums of weakly dependent random
variables satisfying the geometrically β-mixing condition or geometric moment
contraction. Gao et al. [9] further improved the results in Chen et al. [4] by
applying their new framework on the general self-normalized sum. Miao and
Yin [18] proved the logarithmic asymptotic behavior and the weak law of large
numbers for a stationary sequence of nonnegative β-mixing random variables
with heavy-tailed distributions.

In the present paper, let {X,Xn;n ≥ 1} be a β-mixing sequence of identical
non-negative random variables with super-heavy tailed distributions and Sn =
X1 +X2 + · · ·+Xn. The parameters η∗ and η∗ are defined in (1.2) and (1.3).
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Furthermore, we assume that

P(X ≥ e) = 1

and E((logX)d) ≥ 1 for any d ≥ 0. In Section 2, we give some preliminary
lemmas. In Section 3, for ε > 0, b > 1 and appropriate values of x, we obtain
the logarithmic asymptotics behaviors for the tail probabilities P(Sn > eεn

x

)
and P(Sn > eεb

n

). Moreover, we apply our results to the log-Pareto distribution
and the distribution for the super-Petersburg game. In Section 4, we state the
proofs of the main results. In Section 5, we study a generalization of Theorems
3.1 and 3.2.

2. Some preliminary lemmas

We begin with a series of lemmas which are needed in the sequel. The
following decoupling lemma was obtained by Berbee [2] and Schwarz [22]. It
will be used to decouple Xi and Xj when |i− j| is big enough.

Lemma 2.1. (Berbee [2, Lemma 2.1]) Let {X,Xn;n ≥ 1} be random variables
on a probability space (Ω,A,P) and for every 1 ≤ k ≤ n, define

βk = β((X1, X2, . . . , Xk), (Xk+1, Xk+2, . . . , Xn)).

Then there exist independent random variables X̃1, X̃2, . . . , X̃n on the same
probability space such that X̃i and Xi have the same distribution and

(2.1) ∥µ(X1,X2,...,Xn) − µ(X̃1,X̃2,...,X̃n)
∥ ≤ β1 + β2 + · · ·+ βn.

Lemma 2.2. (Nakata [20, Lemma 3.2]) For ε > 0 and x > 0, we have

(2.2) lim sup
n→∞

logP (logX > εnx)

log n
= −η∗x

and

(2.3) lim inf
n→∞

logP (logX > εnx)

log n
= −η∗x.

Remark 2.1. It is easy to see that (2.2) implies that for any δ > 0, there exists
a positive constant n0, such that for all n ≥ n0,

P
(
X > eεn

x
)
≤ n−η∗x+δ

and there exists a subsequence {nk, k ≥ 1}, such that

P
(
X > eεn

x
k

)
≥ n−η∗x−δ

k .

Similarly, (2.3) implies that for any δ > 0, there exists a positive constant n0,
such that for all n ≥ n0,

P
(
X > eεn

x
)
≥ n−η∗x−δ
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and there exists a subsequence {nk, k ≥ 1}, such that

P
(
X > eεn

x
k

)
≤ n−η∗x+δ

k .

Lemma 2.3. (Nakata [20, Lemma 3.2]) For ε > 0 and b > 1 we have

(2.4) lim sup
n→∞

logP (logX > εbn)

n
= −η∗ log b

and

(2.5) lim inf
n→∞

logP (logX > εbn)

n
= −η∗ log b.

Remark 2.2. It is easy to see that (2.4) implies that for any δ > 0, there exists
a positive constant n0, such that for all n ≥ n0,

P
(
X > eεb

n
)
≤ eδnb−η∗n

and there exists a subsequence {nk, k ≥ 1}, such that

P
(
X > eεb

nk
)
≥ e−δnkb−η∗nk .

Similarly, (2.5) implies that for any δ > 0, there exists a positive constant n0,
such that for all n ≥ n0,

P
(
X > eεb

n
)
≥ e−δnb−η∗n

and there exists a subsequence {nk, k ≥ 1}, such that

P
(
X > eεb

nk
)
≤ eδnkb−η∗nk .

Lemma 2.4. (Nakata [20, Lemma 3.3]) Assume that {X,Xn;n ≥ 1} is a
sequence of independent identically distributed non-negative random variables
with E((logX)d) < ∞ for some 0 < d < ∞. Denote λ = min{d, 1}. Then for
t > 0,

1 ≤ u ≤ exp
(
t1/λ

(
1− 2−1/λ

))
and for n = 1, 2, . . ., we have

P
(
Sn > et

1/λ
)
≤ nP

(
X >

et
1/λ

u

)
+

(
2enE((logX)λ)

ut

)u

.

3. Main results and applications

3.1. The main results

In this subsection, we state the main results of the paper. Write x̄ =
max{1, 1/η∗} if η∗ ∈ (0,∞], where by convention, 1/∞ = 0. Write also
x = max{1, 1/η∗} if η∗ ∈ (0,∞].
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Theorem 3.1. Assume that 0 < η∗ < ∞ and the mixing coefficient β(n)
satisfies

log β(n)

log n
→ −∞ as n → ∞,

then for ε > 0 and every x > x̄,

lim sup
n→∞

logP
(
Sn > eεn

x)
log n

= 1− η∗x.

In addition, if η∗ < ∞, then for ε > 0 and every x > x̄,

(3.1) lim inf
n→∞

logP
(
Sn > eεn

x)
log n

= 1− η∗x.

Theorem 3.2. Assume that 0 < η∗ < ∞ and the mixing coefficient β(n)
satisfies

log β(n)

n log n
→ −∞ as n → ∞,

then for ε > 0 and every b > 1,

lim sup
n→∞

logP
(
Sn > eεb

n)
n

= −η∗ log b.

In addition, if η∗ < ∞, then for ε > 0 and every b > 1,

(3.2) lim inf
n→∞

logP
(
Sn > eεb

n)
n

= −η∗ log b.

From the theoretical point of view, it is also interesting to consider the above
tail probabilities in the extreme cases η∗ = 0 and η∗ = ∞. The following results
are complementary to Theorem 3.1 and 3.2.

Theorem 3.3. Assume that η∗ = 0 and the mixing coefficient β(n) satisfies

log β(n)

log n
→ −∞ as n → ∞,

then for ε > 0 and every x > 1,

(3.3) lim sup
n→∞

P
(
Sn > eεn

x
)
= 1.

In addition, if η∗ = ∞, then for ε > 0 and every x > 1,

(3.4) lim
n→∞

logP
(
Sn > eεn

x)
log n

= −∞.

Theorem 3.4. Assume that η∗ = ∞ and the mixing coefficient β(n) satisfies

log β(n)

n log n
→ −∞ as n → ∞,

then for ε > 0 and every b > 1,

(3.5) lim
n→∞

logP
(
Sn > eεb

n)
n

= −∞.



860 Y. MIAO AND Q. YIN

Many results indicate that the extremal behaviour of the partial sum Sn

of the super-heavy tailed sequence is caused by a similar behaviour of the
maximum

Mn = max{X1, X2, . . . , Xn}.
We refer to [5]. Therefore, we get the following results.

Corollary 3.1. Under the conditions in Theorem 3.1, for ε > 0 and every
x > x̄, we have

(3.6) lim sup
n→∞

logP
(
Mn > eεn

x)
log n

= 1− η∗x

and

(3.7) lim inf
n→∞

logP
(
Mn > eεn

x)
log n

= 1− η∗x.

Corollary 3.2. Under the conditions in Theorem 3.2, for ε > 0 and every
b > 1, we have

(3.8) lim sup
n→∞

logP
(
Mn > eεb

n)
n

= −η∗ log b

and

(3.9) lim inf
n→∞

logP
(
Mn > eεb

n)
n

= −η∗ log b.

3.2. Applications

In the subsection, we state two examples.

Example 3.1. (log-Pareto distribution) Let X,X1, X2, . . . be non-negative β-
mixing random variables with

P(X > x) =
1

log x
for x ≥ e,

which is called the log-Pareto distribution in Galambos [7]. Let Sn =
∑n

i=1 Xi.
It turns out that η = η∗ = η∗ = 1 by calculating (1.2) and (1.3).

Assume that the mixing coefficient β(n) satisfies

log β(n)

log n
→ −∞ as n → ∞,

then for ε > 0 and every x > 1, we get

lim
n→∞

logP
(
Sn > eεn

x)
log n

= 1− x.

In addition, assume that the mixing coefficient β(n) satisfies

log β(n)

n log n
→ −∞ as n → ∞,
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then for ε > 0 and b > 1, we get

lim
n→∞

logP
(
Sn > eεb

n)
n

= − log b.

Example 3.2. (The distribution of the super-Petersburg game) LetX,X1, X2,
. . . be non-negative β-mixing random variables with

P(X = 22
k

) = 2−k for k = 1, 2, . . . ,

where X is the payoff of the super-Petersburg game. Some historical discussion
of the game was written in Nakata [19]. The tail probability is

1

lg x
≤ P(X > x) = 2−[lg lg x] =

2{lg lg x}

lg x
<

2

lg x
for x > 4,

where lg x = (log x)/(log 2), [x] is defined as the largest integer not exceeding x
and {x} stand for the fractional part of x, i.e., {x} = x−[x]. Let Sn =

∑n
i=1 Xi.

It turns out that η = η∗ = η∗ = 1 by calculating (1.2) and (1.3).
Assume that the mixing coefficient β(n) satisfies

log β(n)

log n
→ −∞ as n → ∞,

then for ε > 0 and every x > 1, we get

lim
n→∞

logP
(
Sn > eεn

x)
log n

= 1− x.

In addition, assume that the mixing coefficient β(n) satisfies

log β(n)

n log n
→ −∞ as n → ∞,

then for ε > 0 and b > 1, we get

lim
n→∞

logP
(
Sn > eεb

n)
n

= − log b.

4. Proofs of the main results

Proof of Theorem 3.1. Let γ ∈ (0, 1). Decompose the set {1, 2, . . . , n} into l(n)
blocks of a length k(n) and a block of a length less than k(n), where k(n), l(n)
are integers with

(4.1)
k(n)

nγ
→ 1,

l(n)

n1−γ
→ 1 as n → ∞.

According to the above formulas, for any 0 < δ < 1, if n is large enough, it is
easy to see that

(4.2) (1− δ)n1−γ ≤ l(n) ≤ (1 + δ)n1−γ .

By using Lemma 2.1, we know that there exists a sequence of independent
random variables X̃1, X̃2, . . . , X̃n such that for every 1 ≤ i ≤ n, X̃i and Xi

have the same distribution.
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Step 1. We shall prove the lower bound of the limit (3.1), namely,

(4.3) lim inf
n→∞

logP
(
Sn > eεn

x)
log n

≥ 1− η∗x.

Combining (2.1) with (4.2), we get

(4.4)

P
(
Sn > eεn

x
)

≥ P

l(n)∑
j=1

X(j−1)k(n)+1 > eεn
x


≥ P

(
max

1≤j≤l(n)
X(j−1)k(n)+1 > eεn

x

)
≥ P

(
max

1≤j≤l(n)
X̃(j−1)k(n)+1 > eεn

x

)
− l(n)β(k(n))

= 1−
(
1− P

(
X > eεn

x
))l(n)

− l(n)β(k(n))

≥ 1−
(
1− P

(
X > eεn

x
))(1−δ)n1−γ

− (1 + δ)n1−γβ(k(n)).

Note that by Remark 2.1, we have

P
(
X > eεn

x
)
≥ n−η∗x−δ,

which together with (4.4) and the following inequality

1− y ≤ e−y for y ≥ 0,

we get

P
(
Sn > eεn

x
)

≥ 1−
(
1− n−η∗x−δ

)(1−δ)n1−γ

− (1 + δ)n1−γβ(k(n))

≥ 1− e−(1−δ)n−η∗x−δ+1−γ

− (1 + δ)n1−γβ(k(n))

≥ (1 + o(1))(1− δ)n−η∗x−δ+1−γ − (1 + δ)n1−γβ(k(n)).

Substituting (4.2) and log β(n)/ log n → −∞ (n → ∞) into the above inequal-
ity yields

lim inf
n→∞

log
(
(1 + δ)n1−γβ(k(n))

)
log n

= −∞.

Therefore, we obtain

lim inf
n→∞

logP(Sn > eεn
x

)

log n
≥ 1− η∗x− δ − γ.

This implies (4.3) by letting δ ↓ 0 and γ ↓ 0.
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From Remark 2.1, we know that for any δ > 0, there exists a subsequence
{nk; k ≥ 1} such that

P
(
X > eεn

x
k

)
≥ n−η∗x−δ

k .

Hence, analogously to (4.3), it is straightforward that

lim sup
n→∞

logP
(
Sn > eεn

x)
log n

≥ 1− η∗x.

Step 2. We shall prove the upper bound of the limit (3.1), namely,

(4.5) lim inf
n→∞

logP
(
Sn > eεn

x)
log n

≤ 1− η∗x.

Applying Lemma 2.1 and the inequality (4.2), we have

P
(
Sn > eεn

x
)
= P

(
1

n

n∑
i=1

Xi >
eεn

x

n

)

≤ P

(
1

k(n)l(n)

n∑
i=1

Xi >
eεn

x

n

)

≤ P

 1

k(n)

k(n)∑
j=1

1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+j >
eεn

x

n


= P

k(n)∑
j=1

1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+j > k(n)
eεn

x

n


≤ k(n)P

 1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+1 >
eεn

x

n


≤ k(n)P

l(n)+1∑
i=1

X(i−1)k(n)+1 > (1− δ)n−γeεn
x


≤ k(n)P

l(n)+1∑
i=1

X̃(i−1)k(n)+1 > (1− δ)n−γeεn
x


+ k(n)(l(n) + 1)β(k(n))

≤ k(n)P
(
S̃l(n)+1 > (1− δ)n−γeεn

x
)
+ 2nβ(k(n)),

where

S̃l(n)+1 :=

l(n)+1∑
i=1

X̃(i−1)k(n)+1.
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If x̄ = max{1, 1/η∗} = 1, let

1

1 + ε
< λ < 1.

Moreover, if x̄ = max{1, 1/η∗} = 1/η∗, let

η∗

1 + εη∗
< λ < η∗.

Then applying Lemma 2.4 with

t =
(
log
(
(1− δ)n−γ

)
+ εnx

)λ
,

we have

1 ≤ u ≤ exp
((

log
(
(1− δ)n−γ

)
+ εnx

) (
1− 2−1/λ

))
.

In particular, choosing

(4.6) u = max

{
2(η∗x− 1)

λx− 1
, 1

}
,

we have

k(n)P
(
S̃l(n)+1 > (1− δ)n−γeεn

x
)

≤ k(n)(l(n) + 1)P
(
X >

(1− δ)n−γeεn
x

u

)
+ k(n)

(
2enE((logX)λ)

u (log((1− δ)n−γ) + εnx)
λ

)u

≤ 2nP
(
X >

(1− δ)n−γeεn
x

u

)
+ k(n)

(
2enE((logX)λ)

u (log((1− δ)n−γ) + εnx)
λ

)u

.

Together with (4.1) and log β(n)/ log n → −∞ (n → ∞), we know that

(4.7) lim
n→∞

log(2nβ(k(n)))

log n
= −∞.

It follows, from Lemma 2.2, that

lim inf
n→∞

1

log n
log

(
2nP

(
X >

(1− δ)n−γeεn
x

u

))
= lim inf

n→∞

1

log n
log
(
2nP

(
logX > log

(
(1− δ)n−γ

)
+ εnx − log u

))
≤ lim inf

n→∞

1

log n
log

(
2nP

(
logX >

εnx

2

))
= 1− η∗x.
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Note that by (4.1), it implies that

lim inf
n→∞

1

log n
log

[
k(n)

(
2enE((logX)λ)

u (log((1− δ)n−γ) + εnx)
λ

)u]

= lim inf
n→∞

log k(n) + u[log(2enE((logX)λ))− log(u(log((1− δ)n−γ) + εnx)λ)]

log n

≤ lim inf
n→∞

log k(n) + u
[
log
(
2enE((logX)λ)

)
− log u− log

(
1
2εn

x
)λ]

log n

= γ + u(1− λx).

Letting γ ↓ 0, it follows that

lim inf
n→∞

1

log n
log

[
k(n)

(
2enE((logX)λ)

u (log((1− δ)n−γ) + εnx)
λ

)u]
= u(1− λx).

Therefore, by using (4.6), we have

lim inf
n→∞

logP
(
Sn > eεn

x)
log n

≤ 1− η∗x.

Similarly, we can get

lim sup
n→∞

logP
(
Sn > eεn

x)
log n

≤ 1− η∗x.
□

Proof of Theorem 3.2. Decompose the set {1, 2, . . . , n} into l(n) blocks of a
length k(n) and a block of a length less than k(n), where k(n), l(n) are integers
with

(4.8)
k(n)

n/ log n
→ 1,

l(n)

log n
→ 1 as n → ∞.

Note that by the above formula, for 0 < δ < 1, if n is large enough, we have

(4.9) (1− δ) log n ≤ l(n) ≤ (1 + δ) log n.

From Lemma 2.1, we know that there exists a sequence of independent random
variables X̃1, X̃2, . . . , X̃n such that for every 1 ≤ i ≤ n, X̃i and Xi have the
same distribution.

Step 1. We shall prove the lower bound of the limit (3.2), namely,

(4.10) lim inf
n→∞

logP
(
Sn > eεb

n)
n

≥ −η∗ log b.
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Combining with (2.1) and (4.9), we get

(4.11)

P
(
Sn > eεb

n
)

≥ P

l(n)∑
j=1

X(j−1)k(n)+1 > eεb
n


≥ P

(
max

1≤j≤l(n)
X(j−1)k(n)+1 > eεb

n

)
≥ P

(
max

1≤j≤l(n)
X̃(j−1)k(n)+1 > eεb

n

)
− l(n)β(k(n))

= 1−
(
1− P(X > eεb

n

)
)l(n)

− l(n)β(k(n))

≥ 1− (1− P(X > eεb
n

))(1−δ) logn − (1 + δ)(log n)β(k(n)).

From Remark 2.2, for ε > 0, we have

P
(
X > eεb

n
)
> e−δnb−η∗n,

which combine with (4.11) and the following inequality

1− y ≤ e−y for y ≥ 0,

we obtain

P
(
Sn > eεb

n
)

≥ 1−
(
1− e−δnb−η∗n

)(1−δ) logn − (1 + δ)(log n)β(k(n))

≥ 1− e−(1−δ)(logn)e−δnb−η∗n

− (1 + δ)(log n)β(k(n))

≥ (1 + o(1))(1− δ)(log n)e−δnb−η∗n − (1 + δ)(log n)β(k(n)).

Substituting (4.1) and log β(n)/n log n → −∞ (n → ∞) into the above in-
equality yields

lim
n→∞

log((1 + δ)(log n)β(k(n)))

n
= −∞.

It is straightforward that

lim inf
n→∞

logP
(
Sn > eεb

n)
n

≥ −δ − η∗ log b.

Because of the arbitrariness of δ, (4.10) holds.
Note that by Remark 2.2, we know that for any δ > 0, there exists a subse-

quence {nk; k ≥ 1} such that

P
(
X > eεb

nk
)
≥ e−δnkb−η∗nk .
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Hence, analogously to (4.10), it is straightforward that

lim sup
n→∞

logP
(
Sn > eεb

n)
n

≥ −η∗ log b.

Step 2. We shall prove the upper bound of the limit (3.2), namely,

(4.12) lim inf
n→∞

logP
(
Sn > eεb

n)
n

≤ −η∗ log b.

Applying Lemma 2.1 and the inequality (4.9), we have

P
(
Sn > eεb

n
)
= P

(
1

n

n∑
i=1

Xi >
eεb

n

n

)

≤ P

(
1

k(n)l(n)

n∑
i=1

Xi >
eεb

n

n

)

≤ P

 1

k(n)

k(n)∑
j=1

1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+j >
eεb

n

n


= P

k(n)∑
j=1

1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+j > k(n)
eεb

n

n


≤ k(n)P

 1

l(n)

l(n)+1∑
i=1

X(i−1)k(n)+1 >
eεb

n

n


≤ k(n)P

l(n)+1∑
i=1

X(i−1)k(n)+1 >
(1− δ)(log n)eεb

n

n


≤ k(n)P

l(n)+1∑
i=1

X̃(i−1)k(n)+1 >
(1− δ)(log n)eεb

n

n


+ k(n)(l(n) + 1)β(k(n))

≤ k(n)P
(
S̃l(n)+1 >

(1− δ)(log n)eεb
n

n

)
+ 2nβ(k(n)),

where

S̃l(n)+1 :=

l(n)+1∑
i=1

X̃(i−1)k(n)+1.

Applying Lemma 2.4 with

t =

(
log

(
(1− δ)

log n

n

)
+ εbn

)λ

,
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where λ = 1/n, we have

1 ≤ u ≤ exp

((
log

(
(1− δ)

log n

n

)
+ εbn

)(
1− 2−n

))
.

We can put u = u′n, where

(4.13) u′ = max
{
2e2b−1, η∗ log b, 1

}
.

It is not difficult to get that

k(n)P
(
S̃l(n)+1 >

(1− δ)(log n)eεb
n

n

)
≤ k(n)(l(n) + 1)P

(
X >

(1− δ) logn
n eεb

n

u

)

+ k(n)

 2enE((logX)1/n)

u
(
log
(
(1− δ) logn

n

)
+ εbn

)1/n


u

≤ 2nP

(
X >

(1− δ) logn
n eεb

n

u′n

)

+ k(n)

 2eE((logX)1/n)

u′
(
log
(
(1− δ) logn

n

)
+ εbn

)1/n


u′n

.

Together with (4.8) and log β(n)/n log n → −∞ (n → ∞), we notice that

(4.14) lim
n→∞

log(2nβ(k(n)))

n
= −∞.

It follows, from Lemma 2.3, that

(4.15)

lim inf
n→∞

1

n
logP

(
X >

(1− δ) logn
n eεb

n

u′n

)

= lim inf
n→∞

1

n
logP

(
logX > log

(
(1− δ)

log n

n

)
+ εbn − log(u′n)

)
≤ lim inf

n→∞

1

n
logP

(
logX >

εbn

2

)
= − η∗ log b.

Note that by (4.8), we get

lim inf
n→∞

1

n
log

k(n)
 2eE

(
(logX)1/n

)
u′
(
log
(
(1− δ) logn

n

)
+ εbn

)1/n


u′n
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= lim inf
n→∞

[
log k(n)

n
+

u′n

[
log
(
2eE

(
(logX)1/n

))
− log

(
u′
(
log
(
(1− δ) logn

n

)
+ εbn

)1/n)]
n


≤ lim inf

n→∞

log k(n) + u′n
[
log
(
2eE

(
(logX)1/n

))
− log u′ − log

(
1
2εb

n
)1/n]

n

= − u′ log
u′b

2e
.

Therefore, from (4.13),(4.14), (4.15) and the above inequality, we get

lim inf
n→∞

logP(Sn > eεb
n

)

n
≤ −η∗ log b.

Analogously to (4.12), it is straightforward that

lim sup
n→∞

logP
(
Sn > eεb

n)
n

≤ −η∗ log b.
□

Proof of Theorem 3.3. Since E((logX)d) < ∞ for any d ≥ 0. Let η∗ = 0 and
γ, δ ∈ (0, 1) satisfy 1 − γ − δ > 0. By Remark 2.2, there exists a subsequence
{nk, k ≥ 1} such that

P
(
Snk

> eεn
x
k

)
> n−δ

k .

By using the same proof for lower bound in Theorem 3.1, we have

P
(
Snk

> eεn
x
k

)
≥ 1−

(
1− P

(
X > eεn

x
k

))(1−δ)n1−γ
k − (1 + δ)n1−γ

k β(k(nk))

≥ 1−
(
1− n−δ

k

)(1−δ)n1−γ
k − (1 + δ)n1−γ

k n
−((1+δ)/γ−1)γ
k

≥ 1− e−(1−δ)n1−γ−δ
k − (1 + δ)n−δ

k .

It is easy to get that

lim
k→∞

P
(
Snk

> eεn
x
k

)
= 1.

Therefore, (3.3) holds.
Let η∗ = ∞ and x > 1. By using the same proof for upper bound in Theorem

3.1, we have

P
(
Sn > eεn

x
)
≤ k(n)P

(
S̃l(n)+1 > (1− δ)n−γeεn

x
)
+ 2nβ(k(n))

= k(n)P
(
log S̃l(n)+1 > log

(
(1− δ)n−γeεn

x
))

+ 2nβ(k(n))

≤ k(n)P

(
n∑

i=1

log X̃i > log
(
(1− δ)n−γeεn

x
))

+ 2nβ(k(n)).
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Together with the Markov’s inequality and cr-inequality, we get

P

(
n∑

i=1

log X̃i > log
(
(1− δ)n−γeεn

x
))

≤
(
log
(
(1− δ)n−γ

)
+ εnx

)−d E

(
n∑

i=1

log X̃i

)d

≤
(
log
(
(1− δ)n−γ

)
+ εnx

)−d
ndE

(
(logX)d

)
,

which implies that

1

log n
log

(
k(n)P

(
n∑

i=1

log X̃i > log
(
(1− δ)n−γeεn

x
)))

≤ d(1− x).

Letting d tend to infinity, we have

lim
n→∞

1

log n
log

(
k(n)P

(
n∑

i=1

log X̃i > log
(
(1− δ)n−γeεn

x
)))

= −∞.

From the above equation and (4.7), (3.4) holds.

Proof of Theorem 3.4. Since E((logX)d) < ∞ for any d ≥ 0. Let η∗ = ∞. For
b > 1, by using the same proof for upper bound in Theorem 3.2, we have

P
(
Sn > eεb

n
)
≤ k(n)P

(
S̃l(n)+1 >

(1− δ) log neεb
n

n

)
+ 2nβ(k(n))

= k(n)P
(
log S̃l(n)+1 > log

(
(1− δ) log neεb

n

n

))
+ 2nβ(k(n))

≤ k(n)P

(
n∑

i=1

log X̃i > log

(
(1− δ) log neεb

n

n

))
+ 2nβ(k(n)).

Combining with the Markov’s inequality and cr-inequality, we get

P

(
n∑

i=1

log X̃i > log

(
(1− δ) log neεb

n

n

))

≤
(
log

(
(1− δ)(log n)eεb

n

n

))−d

E

(
n∑

i=1

log X̃i

)d

≤
(
log

(
(1− δ)(log n)eεb

n

n

))−d

ndE
(
(logX)d

)
,

which implies that

1

n
log

(
k(n)P

(
n∑

i=1

log X̃i > log

(
(1− δ) log neεb

n

n

)))
≤ −d log b.
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Letting d tend to infinity, we have

lim
n→∞

1

n
log

(
k(n)P

(
n∑

i=1

log X̃i > log

(
(1− δ) log neεb

n

n

)))
= −∞.

Under the above equation and (4.14), (3.5) holds. □

Proof of Corollary 3.1. We only show (3.7) by omitting the proof of (3.6).
From the proof of lower bound and the inequality (4.4), we get

lim inf
n→∞

logP
(
Mn > eεn

x)
log n

≥ 1− η∗x.

Note that Mn ≤ Sn. By using (4.5), we obtain

lim inf
n→∞

logP
(
Mn > eεn

x)
log n

≤ lim inf
n→∞

logP
(
Sn > eεn

x)
log n

≤ 1− η∗x.
□

Proof of Corollary 3.2. We only show (3.9) by omitting the proof of (3.8).
From the proof of lower bound and the inequality (4.11), we get

lim inf
n→∞

logP
(
Mn > eεb

n)
n

≥ −η∗ log b.

Note that Mn ≤ Sn. By using (4.12), it implies that

lim inf
n→∞

logP
(
Mn > eεb

n)
n

≤ lim inf
n→∞

logP
(
Sn > eεb

n)
n

≤ −η∗ log b. □

5. Generalization

We have assumed 0 < η∗ < ∞ in Theorems 3.1 and 3.2. However, it is also
possible that η∗ = 0 for heavy tailed distributions. A general framework is
needed to handle this case. Let us introduce parameters η∗(k) and η∗(k) for
k = 1, 2, . . . as follows.

η∗(k) = − lim sup
t→∞

1

t
logP (logk X > t) ∈ [0,∞]

and

η∗(k) = − lim inf
t→∞

1

t
logP (logk X > t) ∈ [0,∞],

where

logk x =

{
log(logk−1 x) if k ≥ 1

x if k = 0.

Note that

η∗(1) = α∗, η∗(1) = α∗, η∗(2) = η∗, η∗(2) = η∗.
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Theorem 5.1. Fix an integer k ≥ 1. Assume that 0 < η∗(k) < ∞ and the
mixing coefficient β(n) satisfies

log β(n)

log n
→ −∞ as n → ∞,

then for ε > 0 and every x > max{1, 1/η∗(k)},

lim sup
n→∞

logP
(
logk−1 Sn > εnx

)
log n

= 1− η∗(k)x.

In addition, if η∗(k) < ∞, then for ε > 0 and every x > max{1, 1/η∗(k)},

lim inf
n→∞

logP
(
logk−1 Sn > εnx

)
log n

= 1− η∗(k)x.

Theorem 5.2. Fix an integer k ≥ 1. Assume that 0 < η∗(k) < ∞ and the
mixing coefficient β(n) satisfies

log β(n)

n log n
→ −∞ as n → ∞,

then for ε > 0 and every b > 1,

lim sup
n→∞

logP
(
logk−1 Sn > εbn

)
n

= −η∗(k) log b.

In addition, if η∗(k) < ∞, then for ε > 0 and every b > 1,

lim inf
n→∞

logP
(
logk−1 Sn > εbn

)
n

= −η∗(k) log b.

The proofs of Theorems 5.1 and 5.2 are the same as the proofs of Theorems
3.1 and 3.2, respectively.
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